
Downloading Typora

Downloading the Aspartate theme for Typora
https://theme.typora.io/theme/Aspartate/

I downloaded the source code from https://github.com/AntonVanke/typora-Aspartate-theme/rele
ases/ as a zip file.

Changing the Maximum Width
https://stackoverflow.com/questions/52983676/increase-the-editor-width-or-viewable-area-in-typ
ora

Creating images for CDs, DVDs, and flash
drives

The command line has applications for burning data CDS, DVDs, flash, or Blu-ray disks. Before you
can actually burn a disk, however, you first need to create an ISO image - that is, an archive file for
your optical disc. ISO images images usually have the file extension .iso . The name is taken
from the ISO 9660 standard, which is the standard filesystem for managing files on CD-ROMS. ISO
images can also contain a UDF filesystem used by DVDs and Blu-ray disks.

Regardless of the filesystem, you can create ISO images using one of two tools. The first is the dd
command, which generally allows copying from any source, as well as the creation of ISO images.
The command is especially useful for rescuing data on a dying hard drive.

Alternatively, you can create an ISO image with mkisofs , genisoimage , or xorrisofs . Which of
these tools is available to you depends on your distribution. Because of licensing issues, few if any
distributions still use mkisofs , although it is still available as part of CDRTools. However, because
of licensing issues with mkisofs , Debian uses genisoimage . Also, genisoimage has not been
updated for several years, so distributions like Ubuntu and Linux Mint use xorrisofs . All these
tools do the same job and understand almost all of the same options. You can use any of them to
back up your data automatically, and even to exclude individual files if necessary.

wget -qO - https://typora.io/linux/public-key.asc | sudo apt-key add -

add Typora's repository
sudo add-apt-repository 'deb https://typora.io/linux ./'
sudo apt-get update

install typora
sudo apt-get install typora

cd Downloads
unzip typora-Aspartate-theme-0.1.7.zip
mv typora-Aspartate-theme-0.1.7 ~/.config/Typora/themes
cd ~/.config/Typora/themes/typora-Aspartate-theme-0.1.7
mv aspartate.css ~/.config/Typora/themes

af://n4
af://n6
https://theme.typora.io/theme/Aspartate/
https://github.com/AntonVanke/typora-Aspartate-theme/releases/
af://n10
https://stackoverflow.com/questions/52983676/increase-the-editor-width-or-viewable-area-in-typora
af://n12
af://n16

Converting and Copying with dd
The dd does far more than create ISO images. It really should be called cc - for convert and copy.
However, because this name had already been assigned to the C compiler, the developers just
chose the next letter of the alphabet when naming it.

The dd tool creates exact copies of media, whether they are hard disk partitions, CDs, or DVDs.
Also, dd supports reliable, blockwise reading and writing operations. Because dd does not
process or interpret these blocks, the underlying filesystem is not important. In fact, dd isn't even
fazed by hard disks with errors. The basic command syntax for dd is:

The if option tells dd where to read the source data (input file), and the of option defines the
destination (output file). The source and target are often devices, such as hard disk partitions or
CD/DVD drives. Alternatively, you can use an equals sign to point to a file. To copy the hard disk
partition /dev/sda1 bit for bit to /dev/sdb1 , you could type:

You can also use dd in the shell to copy a CD or DVD quickly. To create an ISO image, for
example, use the command:

When you are using dd , you do not need to mount the medium to perform a quick copy: Just
replace the /dev/sr0 drive designator with the device name for your drive.

The ISO image is written to a file called myimage.iso in the current directory. You can rename the
file as necessary.

Optimizing dd Options
The dd tool also has a number of options. One practical option that speeds up the program
considerably is bs (for "block size"). By default, dd uses 512-byte blocks; that is, it reads 512 bytes
at a time and writes them to the output file. If you select a larger block size, you can speed up this
process. For example, typing

 tells dd to copy the partition in blocks of 2KB (2048 bytes). If the last block is smaller than the
specified block size, dd will not pad it. Padding is when bits or characters are used to fill up
unused portions of a data structure.

dd if=<source> of=<target>

dd if=/dev/sda1 of=/dev/sdb1

$ dd if=/dev/sr0 of=myimage.iso
1529961+0 records in
1529960+0 records out
783339520 bytes (783 MB) copied, 90.6944 s, 8.6 MB/s

dd if=/dev/sda1 of=/dev/sdb1 bs=2k

$ dd if=/dev/sda1 of=/dev/sdb1 bs=6k
16059+1 records in
16059+1 records out
98670592 bytes (95 MB) copied 13.801482 s,6.9 MB/s

af://n16
af://n26

The output tells you that dd has copied 16059 blocks of 6144 bytes each with one remaining
block of 4096 bytes.

Besides block size, you can specify how many block dd reads. To copy 40MB, just write bs=1M
count=40. The count option specifies the number of blocks. This makes sense if you want to save a
hard disk boot sector; for example, entering

will just copy the first 512-byte block.

Rescuing with dd
If you are faced with the daunting task of rescuing data from damaged filesystems, dd is
essential. Before you repair the damage, you first should create a backup copy. To do so, use dd
to create a 1:1 copy of the damaged system and then use the copy for your rescue attempt.

Because dd excludes defective sectors from the copy by default, you need to enable the
conv=noerror,sync option,

which tells dd to continue reading and storing data, even if it discovers defective sectors. The
noerror tells dd not to stop on errors, and sync pads unreadable sectors with zeros.

Generating ISO images
The mkisofs command used to be the most common for creating ISO images in Linux. Because
of licensing issues and some conflicts within the developer community, genisoimage emerged as
a fork of the mkisofs codebase. Another tool called xorriso offers a range of ISO creation and
manipulation features. The xorrisofs command launches xorriso in mkisofs emulation
mode. The result is that mkisofs , genisoimage , and xorrisofs all have very similar features
and command-line options. Check your own Linux distribution to see which of these commands is
available (they might not all be present). Debian, Ubuntu, and othe Debian-based alternatives ship
ship with genisoimage , which will be used in the following examples. The basic syntax for all
three is:

The -o flag lets you define the target file name. This is followed by the data you want to store in
the image. As an optional parameter, you can tell the tool to enable Rock Ridge extensions by
setting the -r option, which is useful chiefly for enabling longer file names. To set privileges and
file ownership, you could specify -R. The Joliet extension, which enables the support of non-Latin
characters, is enabled by the -J flag:

The -V option lets you specify a name (volume ID) for the CD/DVD. If the name includes blanks,
special characters, or both, don't forget to use double quotation marks:

dd if=/dev/sda of=bootsector bs=512 count=1

dd bs=512 conv=noerror,sync if=/dev/sda of=/dev/sdb

genisoimage <parameter> -o <myfile>.iso /<directory>/<data>

genisoimage -J -R -o <myfile>.iso /<directory>/<data>

genisoimage -V "Backup, 29th of June" ...

af://n35
af://n40

For more detailed output, you could enable the -v (verbose) option. The opposite of the verbose
option is -quiet. If you prefer to avoid seeing status messages in your terminal window but don't
want to do without the information these messages provide, use

to pipe the output of the genisoimage command to a logfile.

Creating Backups
Genisoimage and xorrisofs have a number of practical options for creating regular backups. For
example, the -m option lets you exclude files from an image. The file name arguments follow the
option. Genisoimage can even handle wildcards and multiple names. For example, to exclude all
HTML files from your ISO image, just use the following structure, changing the command as
necessary:

The -x option lets you exclude whole directories; multiple arguments are supported:

When you use these parameters, make sure you avoid using wildcards when specifying the files
you want to write to the image. For example, the command

tells the shell to resolve the final wildcard, adding all your files to the image.

If you want to exclude files with typical backup extensions, such as files ending in ~, #, or .bak, just
specify the -no-bak option.

Creating Bootable Media
A bootable medium can be used to start a computer. To create bootable, just add the Isolinux
bootloader, which works hand in hand with genisoimage or xorrisofs :

The additional genisoimage options in the preceding command are: -b to name the boot image
and -c to specify the boot catalog. The -no-emul-boot parameter tells the program not to create an
emulation when installing from this CD; instead, it writes the contents of the image file to disk.
The -boot-load-size 4 option specifies that the BIOS should provide four 512-byte sectors for the
boot file. Finally, the -boot-info-table option stipulates that the layout information of the medium
should be read at boot time. Note that this information must be stored in the isolinux directory
below /folder/data.

Testing Images Before Burning

genisoimage ... -log-file log.txt ...

genisoimage ... -m *.html -m *.HTML -o backup.iso /home/huhn

genisoimage ... -x /tmp -x /var -o backup.iso /

genisoimage ... -m *.html -m *.HTML -o backup.iso *

genisoimage -J -R -o bootcd.iso -b isolinux/isolinux.bin -c isolinux/boot.cat -
no-emul-boot
-boot-load-size 4 -boot-info-table /folder/data

af://n50
af://n59
af://n63

INFO

[1] Isolinux: http://syslinux.zytor.com/iso.php

The 'mount' utility gives you a practical approach to testing ISO images before burning them to
CD. To test your image, just mount it on your filesystem, specifying the -o loop option:

The mountpoint must exist, and you do need root privileges for this command. After completing
the test (Figure 1), you can unmount the ISO image again by entering umount /mnt/tmp.

Some distributions also include the isoinfo tool. You can access all sorts of information with it.
To do so, specify the image file name after -i; -d outputs the report to the terminal.

If you want to find out which files are included in the ISO image, use -l instead of -d. Figure 1
shows the "content" of the Blu-ray image that was created with genisoimage -udf .

Device partitions and volumes
A hard disk on a modern computer is usually divided into partitions. A partition can contain
exactly one filesystem (the data structure that stores files and directories). In Linux, swap space is
usually implemented as a filesystem of its own, requiring its own partition. Additionally, many
users create separate partitions for the /boot, /var, and /home directories. In theory, although
Linux can be installed on one partition, likely you'll find multiple partitions.

Before you can install an operating system, you need to create partitions and format them with
filesystems. Most Linux installers provide a GUI for creating and managing partitions during the
installation process, but if your system is already installed, you can turn to several management
utilities for configuring partitions. The Bash command line provides several utilities for creating
and configuring partitions, including fdisk, gdisk, and parted.

These tools are all generally safe, but accidents such as power interruptions can happen, so be
extremely careful. Before beginning, backup your data. Then boot from a Live disk so all your
hard drive partitions are unmounted before you edit them. Most of all, check all your actions
twice before beginning them.

MBR to GPT Switch
A disk is divided into sections called partitions. Until recently, information on the partition
structure was stored in a small sector at the beginning of the disk known as the Master Boot
Record (MBR).

mount -o loop myfile.iso /mnt/tmp

root@jessie:~/test# isoinfo -l -i blu-ray-test.iso

Directory listing of /
d--------- 0 0 0 2048 Jun 30 2015 [267 02] .
d--------- 0 0 0 2048 Jun 30 2015 [267 02] ..
---------- 0 0 0 3976200192 Apr 27 2015 [268
00]DEBIAN_8_0_0_AMD64_DVD_1.ISO;1
---------- 0 0 0 459570267 Apr 22 2015 [1941772
00]LINUXMINT_17_1_CINNAMON_64B.ISO;1
root@jessie:~/test#

http://syslinux.zytor.com/iso.php
af://n75
af://n79

The old MBR served the hard disk industry well, but the industry outgrew it. MBR-based disks
could only have four primary partitions, and the size of a partition was limited to 2TB (once an
impossibly large size but today sometimes severely limiting). The Unified Extensible Firmware
Interface (UEFI) standard, which has rapidly gained acceptance in recent years, defines a new
format for specifying partition information known as the GUID Partition Table (GPT). As older PCs
are gradually replaced, GPT-based disks are gradually replacing MBR-based disks.

fdisk for MBR partitions
The fdisk utility lets you create and manage partitions on MBR-based disks. Fdisk has two basic
modes: interactive and non-interactive. Non-interactive mode queries a partition and displays the
information. By contrast, interactive mode is menu driven and lets you alter, as well as explore,
partitions and partition tables.

Running ==fdisk -l prints a listing of the partition tables of all of the drives on the system. To use
fdisk, you might need to preface it with su or sudo to attain root privileges, depending on your
distribution. To view only a single drive's table, append the drive name to the command:==

==Note that fdisk requires a drive as its device argument. Fdisk's output includes the total drive
size and basic geometry, then lists the partitions on the drive and their start and end locations,
size, and partition type (both by name and by ID number). Size is reported in blocks. By adding the
-u flag, you can have fdisk report start and end locations in sectors instead of cylinders. Running

prints only the size of the device, but it works for both drives and partitions. To create or change
partitions with fdisk, start it in interactive mode: Omit both the -l and -s flags, and specify a drive,
such as

The program writes its output to the screen and provides a command prompt but does not
provide paging (e.g., less), so you might need to scroll up to read lengthy output. ==Entering m at
the prompt list the available fdisk commands. From the main menu, you can create new partitions
(n), delete existing partitions (d), verify the partition table (v), and set several flags (the most
notable being the bootable flag, toggled with a). To apply any changes, write a new partition table
to the drive by entering w. At any time, you can quit without writing the partition table with q.==

==Creating a partition is a multistep process. Type n to begin, and fdisk will ask whether you want
to create a primary partition (p) or an extended partition (e). Whichever you choose, fdisk will then
ask you to select the partition number (be careful to choose an unused one if you have already
created several), the location on the drive where you want the partition to start, and its size.==

==Fdisk will prompt you with the number of the first available cylinder on the drive. To leave an
empty space between partitions, choose a higher number, which could help if you ever need to
resize your partition.==

gdisk for GPT Partitions

fdisk -l /dev/sda

fdisk -s </some/device>

fdisk /dev/hda
fdisk -u /dev/sdc

af://n82
af://n93

The new UEFI standard replaces the old MBR with the new GPT format, which solves some of the
problems associated with the MBR, supporting a much larger disk size and theoretically allowing
up to 128 partitions on a disk.

Because GPT uses a different format for storing partition information, it requires a different
utility. The most popular options for the Linux command line are the GPT fdisk utilities gdisk,
sgdisk, and fixparts. The GPT fdisk toolset comes standard on several contemporary Linux
systems; if you don't find it, install it through your distro's packagement system. Once you have
installed the GPT toolset, you can use it to check and modify the disk. The gdisk command here
returns what follows for a new disk:

Several choices for managing the partition table appear in the text mode menu. For instance,
choosing the p option prints the partition table, whereas o first outputs a security prompt and
then creates a GPT table. The n option lets you create a new disk-sized data partition. The w
option writes the data (saves the changes) from the gdisk session.

Gdisk can convert MBR-partitioned hard disks to GPT, which removes the need to back up and
restore existing partition content. Choosing r sends you to the recovery and transformation
menu, which offers options for converting your MBR disk to GPT. Gdisk can also convert from GPT
to MBR. In some cases, this option will not work, so be sure to back up your data if you try it.

GNU Parted
Fdisk is one of the older Linux tools, and Gdisk is modeled after it. Increasingly, many users prefer
GNU Parted.

==You can run parted in interactive or non-interactive mode. The non-interactive syntax is parted
</some/device> . Running the command==

==prints the partition table found on the /dev/sda disk. The information displayed is similar to
fdisk's.==

Providing the -i flag before the device and command arguments launches parted in interactive
mode. Unlike fdisk, however, you can create and modify partitions in non-interactive mode as
well.

One important difference between between parted and fdisk and gdisk is that parted commands
take effect immediately; that is when you create a new partition table, the existing partition table
(if any) on the target drive is overwritten. This leaves little margin for error when working with a
drive that has existing partitions and can leave you hunting for recovery tools (fortunately, Parted
can assist in that task as well). The command

gdisk /dev/sdh

Partition table scan:
MBR: not present
BSD: not present
APM: not present
GPT: not present

parted /dev/sda print

parted </some/device> mklabel <type>

af://n99

creates a new partition table on the specified device. You must specify the partition table type; for
Linux, a widely used type is msdos, although Parted supports several others. To create a new
partition, use:

where partition_type is primary, extended, or logical. For primary or logical partitions, you must also
specify filesystem_type, the filesystem format that the partition will hold.

However, the mkpart command does not actually create the filesystem. To do so, use mkpartfs
instead. Parted supports many common filesystems, including ext4, FAT32, NTFS, JFS, UFS, XFS,
and Linux swap. The start and end parameters specify the location of the new partition on the
disk; you do not have to use disk geometry such as sectors, but you can provide human-readable
sizes expressed in megabytes.

To remove a partition, use parted </some/device> rm , where is the partition number.

Parted really improves on fdisk in its ability to move and resize partitions. For variety's sake, start
Parted in interactive mode before exploring partition manipulation. You still need a drive device
argument, such as

While in interactive mode, the device given as an argument is assumed; you do not need to
include it in the commands you type. To switch to a different device within interactive mode, type

at the Parted command prompt.

The resize command takes three arguments: the partition number, the new start location of the
resized partition, and the new end location. To continue the above example, running

at the prompt would resize the partition at /dev/hdb1 to begin at the start of the drive and end at
the 1000MB mark.

You can use Parted both to grow and shrink partitions. However, for ext2/3 filesystems, you
cannot change the start location with a resize command, only the end. That restriction does not
apply to the other filesystems that Parted supports.

Parted can move a partition to a new free location on a drive with the move command. The syntax
is

although is optional. If omitted, the partition is moved to the new location in its original size. If an
ending point defines a new size for the partition, Parted automatically resizes as well as moves it.

When shuffling and resizing partitions, you might need to duplicate a partition in a new location,
perhaps to move a partition to a new device in an attempt to free up space. At the Parted prompt,
use

parted </some/device> mkpart <partition_type> <filesystem_type> <start> <end>

parted -i /dev/hdb

select <some/other/device>

resize 1 0 1000

move <partitionNumber> <start> <end>

where /orginal/device is optional; if omitted, the current working device will be assumed. Thus, the
command

copies the /dev/sdb5 partition to /dev/hdb1.

If you accidentally delete a partition from the partition table or overwrite the partition table itself,
entering

initiates a search for filesystem signatures on the disk. Parted searches a range of sectors around
the start and end positions for signs of the filesystem, so you do not need to be exact. If it finds a
potential filesystem in the appropriate location, Parted asks whether you want to create a new
partition. For this rescue to work, the filesystem must be more or less intact; Parted can only
recreate partition table entries - to fix filesystem corruption, you need other tools.

The LVM Alternative
A Logical Volume Manager (LVM) is an alternative to traditional partitioning that treats the space
on one drive - or even multiple drives - as a single unit and divides it into logical volumes. GNU
Parted also works with LVMs.

The use of LVMs may come at a price: Should a drive become corrupt, your entire system
suddenly can be inaccessible. By contrast, if you use traditional partitions, especially for /home,
you might be able to recover data by booting from a Live device after the root or boot partition
crashes. You should research the difference between LVMs and traditional partitioning carefully
before deciding which to use.

Configuring filesystems with mkfs, df,
du, and fsck

Linux supports a wide array of filesystem types, including many that originated on other
operating systems. The most common choices for hard disks, however, remain the native ext3/4,
followed by the high-performance XFS and Btrfs filesystems. For compatibility, knowing how to
work with the VFAT filesystem is important, because it is the standard choice found pre-installed
on many media, including USB thumb drives and flash disks. Additionally, several of the same
utilities used to manage normal filesystems also apply to swap partitions, which the Linux kernel
uses as virtual memory when RAM is scarce.

mkfs
The mkfs command creates a new filesystem on a specified block device, such as a partition on a
hard disk. The basic usage is:

cp <original/device> <originalPartition> <targetPartition>

cp /dev/sdb 5 1

rescue <start> <end>

mkfs -t <filesystem_type> </the/device>

af://n132
af://n135
af://n137

Filesystem options

The mkfs. utility, where is a filesystem supported by the command (e.g., ext3, ext4, XFS, Btrfs,
VFAT), supports options that tweak filesystem settings such as the size of blocks used,

number and size of inodes, fragment size, amount of space reserved for root-privileged
processes, amount of space reserved to grow the group block descriptor if the filesystem

ever needs to be resized, and settings for stripe, stride, and other details required for using
the filesystem in a RAID array.

All of these parameters have default settings, and unless you are sure you need to change
them, you can safely create a filesystem with the default settings. Nevertheless, it is a good
idea to familiarize yourself with the basics of filesystem parameters in general, in case you
ever run into problems. The block size is the size of the chunks that the filesystem uses to

store data - in a sense, it is the granularity of the pieces into which a file is split when stored
on the disk.

Larger block sizes can improve disk throughput because the disk can read and write more
data at a time before seeking to a new location; however, a large block size can waste space
in the presence of many small files, because a full block is consumed for each fragment of a

file, even if only a small portion of it is used. Ext3/4 and XFS allow you to specify the block size
(1024, 2048, 4096, etc.) by adding a -b flag; the syntax that follows the flag varies, so consult

the manual pages for each option.

The mkswap command creates a swap area on a disk partition, just as mkfs creates a
filesystem. The basic syntax is the same, mkswap </the/swap/device>, with the optional -c flag
again allows you to check the partition for bad blocks before creating the swap area. Just as a
new filesystem must be attached to Linux's root filesystem with mount before you can use it,

a new swap partition must be attached with swapon -L </the/swap/device>.

where < filesystem_type > is a Linux-supported filesystem type (e.g., ext3 or XFS) and < /the/device >
is the location of the target disk partition (e.g., /dev/sda1 or /dev/sdc3). Filesystem-specific options
are added after < filesystem_type >.

The basic form of the command described in the previous example hands off creation of the
filesystem to one of several specialized utilities, depending on the filesystem type you specify
(e.g., mkfs.ext3, mkfs.xfs, mkfs.vfat). Because filesystems differ so much from each other, having
specialized tools maintained by experts in the individual filesystems results in more stable code.

Most of these utilities implement the same options, although they vary according to the features
implemented in the different filesystems. According to the mkfs man page, the general form of
the command is now deprecated in favor of these type-specific mkfs.* utilities.

Despite the differences, a few key options are common to all mkfs.* utilities. Adding the -c flag
checks the specified device for bad blocks, which is then skipped over during the filesystem
creation step. Adding the -v or -V flags produces verbose or extremely verbose output,
respectively.

Note: The simulated mkfs commands for XFS and ext3 differ. (The -N and -n flags specify a
simulation, which does not actually create a filesystem.) The -f and -F flags tell mkfs to force
filesystem creation, even if it detects a filesystem already in place.

mkfs Examples
To format the first partition of the first drive on a system as ext4, you would run the command:

af://n156

This command uses the default block size, inode parameters, and all other options, some of
which are determined at run time when mkfs analyzes the geometry of the disk partition. Using

also creates an ext4 filesystem on /dev/sda1, but it forces the use of 4096-byte blocks. Running

creates the same filesystem as the preceding command, but it creates the journal on a separate
partition (*/dev/sdb1).

To create an XFS partition on /dev/sda1, enter the following mkfs command:

To specify the use of 4096-byte blocks on this filesystem, use

which is a different syntax than that used for ext4. The following command, which uses the
alternative (and now preferred) mkfs.*

creates a Btrfs filesystem with a 16KiB default block size (where 1000KiB = 1024 KB). To create a
partition with 4KiB block size, use:

The variations in syntax make it especially critical to refer to the man page for more on the use of
mkfs with specific filesystem options.

Routine maintenance
Running out of space on a filesystem is one of the most common problems you are likely to
encounter on a Linux system, and it is not just an inconvenience for storage reasons - the
system's use of temporary files means that a full or nearly full root filesystem could interfere with
normal operations.

To check filesystem usage, use df. When given no arguments, df returns a table summarizing
usage of all of the mounted filesystems - in kilobytes and as a percentage of each filesystem's
total size. To get a report for a particular filesystem, specify it as an argument, such as df
/dev/sda1.

Also, you can pass a file name as an argument, and df will report on the filesystem that contains
the specified file- which could be handy if you don't remember where a particular filesystem is
mounted. Finally, a few options exist to make df more useful: -i reports inode usage instead of
block usage of the filesystem(s); -l limits the report to local filesystems only; --type= <

mkfs -t ext4 /dev/sda1

mkfs -t ext4 -b 4096 /dev/sda1

mkfs -t ext4 -b 4096 -J device=/dev/sdb1 /dev/sda1

mkfs -t xfs /dev/sda1

mkfs -t xfs -b size=4096 /dev/sda1

mkfs.btrfs -L mylabel </dev/partition>

mkfs.btrfs -L mylabel -1 4k </dev/partition>

af://n173

filesystem_type > and --exclude-type= < filesystem_type > allow you to limit or exclude output to a
particular filesystem type.

On discovering a nearly full filesystem, you can further explore space usage with du. Executing du
</some/directory> returns a list of the disk space occupied by each subdirectory beneath
</some/directory>, expressed in kilobytes. Adding the -a option tells du to report the space used by
the files in addition to the directories.

Both commands are recursive. If you do not provide a directory as an argument to du, it reports
on the current directory. The -c option produces a grand total in addition to individual usage
statistics. Other helpful options are -L, which could help track down an errant large file, following
all symbolic links; -x, which limits the scope of the search to the current filesystem only; and --max-
depth=N, which allows you to limit the number of recursive subdirectories into which you
descend. This option is very helpful when dealing with a large file library.

Several utilities exist to help you get better performance out of your filesystems. The tune2fs
program lets you control many parameters of ext2, ext3, and ext4 filesystems. You can set the
number of mounts between automatic filesystem integrity checks with tune2fs -c N, set the
maximum time interval between checks with tune2fs -i N[d|m|w] (where d, m, and w are days
months and weeks, respectively), or add an ext3 or ext4 journal to a filesystem that does not have
one with tune2fs -j. Additionally, you can adjust RAID parameters, journal settings, and reserved
block behavior, as well as change parameters manually, such as the time last checked and
number of mounts, which are usually reported automatically.

Other utilities are associated with specific filesystems. Btrfs has a separate utility for resizing
filesystems (btrfs filesystem resize). The *btrfs-convert tool can migrate data from existing ext2/3/4
volumes to the Btrfs filesystem.

XFS also provides a defragmentation tool called xfs_fsr that can defragment a mounted XFS
filesystem, and Btrfs supports defragmentation of metadata or entire filesystems. The

command defragments the entire filesystem verbosely. No such utilities exist for ext3, but ext4
has e4defrag.

Troubleshooting
If you suspect trouble on a filesystem, you can run

to check and make repairs. If you run fsck with no target device specified, it will run checks
sequentially on all of the filesystems in /etc/fstab.

The filesystem-specific error-checking programs - e2fsck for ext2, ext3 and ext4, btrfsck for Btrfs,
and fsck.vfat for VFAT - support many of the same options, but again, the syntax may vary, so it is
critical to read the man page for the filesystem checker before attempting any repairs.

When corrupted, VFAT filesystems suffer from bad clusters, bad directory pointers, and even bad
file names. The fsck.vfat tool can find and correct many of these problems. Like the others, it can
be called in non-interactive mode for use in scripts, and it can mark bad clusters automatically to
prevent their reuse in the future. The -V flag tells fsck.vfat to run a second check after it has tried
to correct any errors.

btrfs filesystem defragment -r -v /

fsck /a/<device>

af://n184

INFO

[1] systemd.mount: https://www.freedesktop.org/software/systemd/man/systemd.mount.ht
ml

XFS has separate error-checking and repair utilities: xfs_check and xfs_repair (see the man pages
for more on command-line options).

For ext2/3/4 problems, the debugfs tool lets you examine a filesystem and correct errors
interactively. It can step through and work with commands similar to those of a typical Linux shell,
such as cd, open, close, pwd, mkdir, and even chroot.

Media access with mount and fstab
Linux attaches media directly to the directory tree in a process known as mounting. Device files
for devices of all kinds - network, removable media, hard disk partitions - can typically be found
below the /dev (device) directory.

Many modern Linux systems handle the mounting process automatically. Your hard drives, CDs,
and USB sticks just appear in the desktop GUI, and you can navigate to the data without the need
for explicit mounting commands; however, the classic Unix/Linux mount system is still useful for
troubleshooting or when working with systems that don't offer udev support.

This article describes how to mount and manage storage resources using mount, umount, and the
fstab file. Systemd environments offer an alternative option for mounting using systemctl.

The Systemd init environment used on most modern Linux systems lets you create a Systemd
unit file then reference the file to mount the resource. The unit file should be named with the
.mount extension to specify that the file contains mount information.

The unit file contains a [Mount] section with the following basic options:

What=- path, partition name, or UUID for a device, partition, file, or other resource you wish
to mount.
Where=- absolute path of the mount point.
Type=- (optional) the filesystem type

systemd.mount also supports several other unit file options. See the documentation online [1].
Once you create the unit file, you can mount and manage the resource using systemctl
commands:

See the article on Systemd (elsewherein this issue) for more unit files and the systemctl command.

Name Game
Integrated Drive Electronics (IDE) device names (names of hard drives, CD-ROMs, or DVD drives)
start with sd (the "s" refers to the Serial Advanced Technology Attachment (SATA) interface used
for most modern mass storage); the letter that follows depends on the connector and the order.
The first drive is sda, the second sdb and so on.

systemctl daemon-reload
systemctl start unit_file_name

https://www.freedesktop.org/software/systemd/man/systemd.mount.html
af://n192
af://n215

Linux handles USB mass storage devices, SD cards and so on as SCSI devices. Their device
filenames also start with sd. CD and DVD drives tend to be listed as sr, and floppy disk drives are
fd.

Besides the letters, many devices have numbers that reflect the logical structure of the storage
media (e.g., the first primary partition on a SATA hard disk attached to the first controller is sda1,
the second partition is sda2, etc.). Logical partition numbers start at 5. The second logical partition
on sdc thus maps to the device file /dev/sdc6.

The system enumerates SCSI CD/DVD drives in the same way (sr0, sr1, etc.), along with floppy
drives (fd0, fd1, etc.).

Many distros use aliases such as /dev/cdrom or /dev/dvd that point to the names for CD/DVD
drives. To support access to various devices and filesystems, you need to create a link between a
device and a directory in the filesystem tree. The mount command associates a device with a
directory.

Mounting
Mounting occurs at boot time or manually at a later stage. Hard disk partitions are usually
mounted at boot time; USBs, CDs, DVDs, and other removable media used to be mounted
manually and were often in the domain of the system administrator (root), unless the privilege
was specifically given to users. Nowadays, most of these devices are autodetected and are
mounted automatically or at a user prompt.

However, if you have trouble or need a little more control, the utility used to mount from the
command line is mount. A number of optional parameters aside, you have to specify the device
file and the mountpoint. If you call mount without supplying any parameters, the command tells
you, among many other things, which media are currently mounted.

Additionally, mount tells you about the filesystems for the devices, and it lets you know what
mount options are in place. The /dev/sda1 partition has been formatted with ext4 and mounted as
the root partition (at /); the CD drive contains ISO 9660 media (the default filesystem for data CDs)
and has been mounted under /media/cdrom0.

The listing also tells you if the hard disk partitions are readable and writable (rw for "read-write").
The information

ensures the media will be remounted read-only; that is, the data will be readable but with no
write access.

Mounting Removable Media

01 mount
02 /dev/sda1 on / type ext4 (rw,errors=remount-ro)
03 /dev/sda5 on /home type ext4 (rw)
04 /dev/sda6 on /mnt/scratch type ext3 (rw)
05 /dev/sr0 on /media/cdrom0 type iso9660 \
06 (ro,nosuid,nodev,utf8,user=huhn)

errors=remount-ro

af://n221
af://n229

Data CDs/DVDs, floppy disks, and USB media are normally mounted automatically when you plug
them in. If your system does not automount or you're working on the console, run mount
manually. Linux assigns directories below /mnt or or /media for removable media. In the
command line, you need to type the device file name and the mountpoint.

When you mount a USB mass storage device, check the /var/log/messages or /var/log/kern.log
logfiles to see if the device has been detected correctly and to discover the device file name. To
mount the device detected, sdc, in an existing directory, /media/usb, type:

 Linux typically autodetects the filesystem type for media. If you get an error message, you can
explicitly specify the filesystem by supplying a value for the -t parameter - for example,

for an older Windows filesystem on FAT-formatted media. Besides vfat (for the DOS/Windows
filesystem), the supported values are ext2 (extended filesystem version 2), ext3 (extended
filesystem version 3), ext4 (extended filesystem version 4), reiserfs (Reiser filesystem), iso9660 (ISO
9660), ntfs (NT filesystem), and so on.

Most systems define the device names and mountpoints for CDs/DVDs and floppies, so a
command such as

might be all it takes to mount a CD.

Critical Mount Options
The -o ro option for mount makes a device "read-only." Its counterpart, as well as the default
setting, is -o rw (for "read-write"). Combinations are also supported: To remove write access for
media mounted with read-write access, supply two parameters when running the command; for
example,

tells mount to remount the media and at the same time disable write access (ro). To test an ISO by
mounting a 1:1 copy of the image before burning, enter:

which uses a loop device to access the image.

Tabular: /etc/fstab
Linux mounts some filesystems directly at boot time. The /etc/fstab file has entries for the
filesystems to mount.

The fstab file used to contain configuration information for the full set of hard disk partitions in
addition to the various removable media. But, removable media are now managed by the udev
subsystem, which allows regular users to mount and unmount them from the command line or
desktop.

mount /dev/sdc1 /media/usb

mount -t vfat /dev/sdc1 /media/usb

mount /media/cdrom

mount -o remount,ro /media/usb

mount -o loop file_name.iso /mnt/tmp

af://n239
af://n245

The first column is the device file, UUID, or label, and the second is the mountpoint. The other
entries specify the filesystem for the media (the kernel normally autodetects this - auto), and
various mount options.

Often you see entries such as user (the device can be mounted without root privileges), nouser
(the opposite), auto (mounted at boot time), noauto, exec (executable), or noexec. If you want to
modify the /etc/fstab file, you must become root.

Out!
To unmount filesystems, use the command umount. Although Linux automatically dismounts
mounted media at shutdown, you can also unmount devices manually, including removable CD-
ROMs/DVDs, floppies, and USB devices:

USB media and floppies must be unmounted before you remove them. CD and DVD drives block
automatically and refuse to open the drive bay while a disk is mounted.

An additional safety mechanism is that unmount will not unmount a filesystem while a process is
accessing the files. A program might be using the data on the CD in the drive, or the data might be
part of the working directory used by the shell or a file manager (i.e., /media/cdrom0) or one of its
subdirectories. To determine which process is blocking the device, run lsof, which displays open
files and directories, as root against the device name of the drive, as in Listing 2.

If lsof does not tell you what the command is, it will tell you the PID (process number). You can
then use the ps tool and output a list of all processes in wide display mode, pipe the output to
grep, and search the output for the process ID:

In this case, it looks like Gwenview is the culprit. If you close the image viewer window showing
the pictures on the CD content, you should be able to unmount the CD with:

If this command doesn't help, you might have to be more assertive and use the kill command.

umount /media/usb
umount /media/cdrom0

lsof /dev/sr0
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
gwenview 23884 paul cwd DIR 11,0 2048 4096 /run/media/paul/Ubuntu 15.04
amd64/pics

ps auxwww | grep 23884
 paul 23884 0.3 1.2 80453276544 ? S1 22:36 0.00 /usr/bin/gwenview
/run/media/paul/Ubuntu 15.04 amd64/ubuntu/pics/blue-lowerleft.png -caption
Gwenview -caption Gwenview --icon gwenview

umount /media/cdrom0

af://n250

IDE Devices of Yore

Although they are very rare nowadays, you may have an old computer that still uses IDE-
controlled mass storage devices. If this is the case, you need to know that IDE device names

(names of hard disks, CD-ROMs, or DVD drives) start with hd (for hard disk); the letter that
follows depends on the connector and the order. Each controller provides two connectors:
The first is the master and the second is the slave. Device names are hda (master) and hdb
(slave) for the devices attached to the first controller. Devices on the second controller are

known as hdc (master) and hdd (slave).

Discrete states of binary information

on or off

yes or no

0 or 1

true or false

Number of Bits Common Representation Terms

1 Bit/Digit/Flag

4 Nybble/Nibble

8 Byte/Octet/Character

16 Double Byte/Word

32 Double Word/Long Word

64 Very Long Word

The Language of Computers
Number Representations

Analog - infinite number of intermediate states in between on and off
Digital - discrete states
Logical - true of false
Mathematical - 0 or 1

bit - binary digit

setting the bit - makes it a 1

resetting or clearing the bit - makes it a 0

8 bits is technically called an octet, but it is more commonly called a byte.

af://n267
af://n268

Representation (Base)
Constituent
Numbers

Numbers in their Corresponding
Forms

decimal numbers (base
10)

0 through 9 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

binary numbers (base 2) 0 or 1
0, 1, 10, 11, 100, 101, 110, 111, 1000,
1001, 1010

octal numbers (base 8) 0 through 7 0, 1, 2, 3, 4, 5, 6, 7

hexadecimal
numbers (base 16)

0 - 9, A-F 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

128 64 32 16 8 4 2 1

2^7^ 2^6^ 2^5^ 2^4^ 2^3^ 2^2^ 2^1^ 2^0^

$^1/_2$ $^3/_2$ $^7/_2$ $^{15}/_2$ $^{31}/_2$ $^{62}/_2$ $^{125}/_2$ $^{125}/_2$

1 1 1 1 1 0 1 0

1 1 1 1 1 0 1 0

0 0 0 0 0 3 7 2

1 1 1 1 1 0 1 0

0 0 0 0 0 0 F A

Example 1: Decimal to Binary to Octal to Hexadecimal

250 (decimal)

Note: How many times does the denominator go into the numerator as a whole number? The
resulting binary digit is that remainder.

11111010 (binary)

Note: The number 8 is equivalent to 2^3^. So, take the given binary number and separate it into
groups of 3 bits, from right to left. Octal has groups of 3 bits. That's how you convert binary
numbers to octal numbers.

Octal to Decimal

372 \to (3 \times 64) + (7 \times 8) + (2 \times 1) = 192 + 56 + 2 = 250

Hexadecimal to Decimal

FA \to (15 \times 16) + (10 \times 1) = 240 + 10 = 250

11111010 (binary)

Note: The number 16 is equivalent to 2^4^. So, take the given binary number and separate it into
groups of 4 bits, from right to left. Hexadecimal has groups of 4 bits. That's how you convert
binary numbers to hexadecimal numbers.

af://n337

NAME FACTOR VALUE IN BYTES

kibibyte (KiB) 2^10^ 1,024

mebibyte (MiB) 2^20^ 1,048,576

gibibyte (GiB) 2^30^ 1,073,741,824

tebibyte (TiB) 2^40^ 1,099,511,627,776

pebibyte (PiB) 2^50^ 1,125,899,906,842,624

exbibyte (EiB) 2^60^ 1,152,921,504,606,846,976

zebibyte (ZiB) 2^70^ 1,180,591,620,717,411,303,424

yobibyte (YiB) 2^80^ 1,208,925,819,614,629,174,706,176

NAME FACTOR VALUE IN BYTES

kilobyte (KB) 10^3^ 1,000

megabyte (MB) 10^6^ 1,000,000

gigabyte (GB) 10^9^ 1,000,000,000

terabyte (TB) 10^12^ 1,000,000,000,000

petabyte 10^15^ 1,000,000,000,000,000

exabyte (EB) 10^18^ 1,000,000,000,000,000,000

zettabyte (ZB) 10^21^ 1,000,000,000,000,000,000,000

yottabyte (YB) 10^24^ 1,000,000,000,000,000,000,000,000

Binary vs. decimal data measurements

Binary System

Decimal System

Understanding Disk Drives
You should be familiar with disk drives and how data is organized on a disk so that you
can find data effectively. Disk drives are made up of one or more platters coated with
magnetic material, and data is stored on platters in a particular way. The following disk
drive components are illustrated in Figure 5-2:

Geometry—Geometry refers to a disk’s logical structure of platters, tracks, and
sectors.
Head—The head is the device that reads and writes data to a drive. There are two
heads per platter that read and write the top and bottom sides.
Tracks—Tracks are concentric circles on a disk platter where data is located.
Cylinders—A cylinder is a column of tracks on two or more disk platters.
Typically, each platter has two surfaces: top and bottom.
Sectors—A sector is a section on a track, usually made up of 512 bytes.

af://n423
af://n500

Disk Geometry Equations
(https://blog.kalehmann.de/blog/2017/07/20/simple-boot-loader.html)

Parts of the Filesystem
In UNIX and Linux, everything is considered a file, including disk drives,
monitors, tape drives, network interface cards, system memory, and directories. UNIX
files are defined as objects, which means a file, like an object in an object-oriented
programming language, has properties and methods (actions such as writing, deleting,
and reading) that can be performed on it.

af://n515
https://blog.kalehmann.de/blog/2017/07/20/simple-boot-loader.html
af://n517

UNIX/Linux has four components defining the file system: boot block, superblock,
inode block, and data block. A block is the smallest disk allocation unit in the UNIX/
Linux file system and can be 512 bytes and up; block size depends on how the disk
volume is initiated. The boot block contains the bootstrap code—instructions for
startup. A UNIX/Linux computer has only one boot block, on the main hard disk.

The superblock contains vital information about the system and is considered
part of the metadata. It specifies the disk geometry and available space and keeps track
of all inodes (discussed in more detail in the following section). The superblock also
manages the file system, including configuration information, such as block size for
the drive, file system names, blocks reserved for inodes, and volume name. Multiple
copies of the superblock are kept in different locations on the disk to prevent losing
such important information.

Inode blocks contain the first data after the superblock. An inode is assigned
to every file allocation unit. As files or directories are created or deleted, inodes are
also created or deleted. The link between inodes associated with files and directories
controls access to those files or directories.

The data block is where directories and files are stored on a disk drive. This
location is linked directly to inodes. As in Microsoft file systems, the Linux file system
on a PC has 512-byte sectors. A data block is equivalent to a cluster of disk sectors on a
FAT or NTFS volume. Blocks range from 1024 to 4096 bytes each on a Linux volume.

Inodes
Inodes contain file and directory metadata and provide a mechanism for linking data
stored in data blocks. When a file or directory is created on a Linux file system, an
inode is assigned that contains the following information:

The mode and type of the file or directory
The number of links to a file or directory
The UID and GID of the file’s or directory’s owner
The number of bytes in the file or directory
The file’s or directory’s last access time and last modified time
The inode’s last file status change time
The block address for the file data
The indirect, double-indirect, and triple-indirect block addresses for the file data
Current usage status of the inode
The number of actual blocks assigned to a file
File generation number and version number
The continuation inode’s link

The only pieces of metadata not in an inode are the filename and path. Inodes
contain modification, access, and creation (MAC) times, not filenames. An assigned
inode has 15 pointers that link to data blocks and other pointers where files are stored.
Pointers 1 through 12 link directly to data storage blocks in the disk’s data block and
contain block addresses indicating where data is stored on the disk. These pointers are
direct pointers because each one is associated with one block of data storage.

As a file grows, the OS provides a few additional inode pointers. In a
file’s inode, the first 12 pointers are called direct pointers . The 13th pointer is called an indirect
pointer. The 14th pointer is called a double-indirect pointer, and the 15th pointer is called a triple-
indirect pointer.

af://n523

Source: http://harrykar.blogspot.com/

To expand storage allocation, the OS initiates the original inode’s 13th pointer,
which links to 128 pointer inodes. Each pointer links directly to 128 blocks located in the
drive’s data block. If all 12 pointers in the original inode are consumed with file data,
the 13th pointer links to another 128 pointers. The first pointer in this indirect group of
inodes points to the 13th block. The last block of these 128 inodes is block 130.

The cp creates a new file with a new inode number, whereas the mv command generates a copy
the original file, and it possesses the same inode as the original file, which is essentia link. Hard
links contain a filename and an inode number associated with that filename.

Nested Do Loop Inside For Loop (for moving files)
Note: The following command requires the use of an underscore character in the middle of every
file that is to be moved.

for i in *_*;do mv $i <destination directory>;done

 Let us take a look at how to access a Linux file through the inode. We will make a few
assumptions.
 First, our Linux inode will store 12 direct pointers, 1 indirect pointer, 1 doubly indirect pointer,
and 1 triply indirect pointer. Blocks of pointers will store 12 pointers no matter whether they are
indirect, doubly indirect, or triply indirect blocks. We will assume that our file consists of 500
blocks, numbered 0 to 499, each block storing 8 KB (the typical disk block stores between 1 KB
and 8 KB depending on the file system utilized).
 Our example file then stores 500 * 8 KB = 4000 KB or 4 MB. Here is the breakdown of how we
access the various blocks.

Blocks 0–11: direct pointers from the inode.

Blocks 12–23: pointers from an indirect block pointed to by the inode’s indirect pointer.

For the rest of the file, access is more complicated.

We follow the inode’s doubly indirect pointer to a doubly indirect block. This block
contains 12 pointers to indirect blocks. Each indirect block contains 12 pointers to disk
blocks.

af://n555

Command Description

stat file1.txt Display file's inode information

stat --format=%i

file1.txt
Display file's inode number

ls -i Display the inodes associated with each file in directory

ls -i file1.txt Display the inode associated with a specific file

df -i
Display inode information associated with your mounted
filesystems

tune2fs -l /dev/sda2 Display superblock information for a filesystem

debugfs Manipulate filesystem metadata

The doubly indirect block’s first pointer points to an indirect block of 12 pointers,
which point to blocks 24–35.
The doubly indirect block’s second pointer points to another indirect block of 12
pointers, which point to blocks 36–47.
The doubly indirect block’s last pointer points to an indirect block of 12 pointers,
which point to blocks 156–167.

We follow the inode’s triply indirect pointer to a triply indirect block. This block contains
12 pointers to doubly indirect blocks, each of which contains 12 pointers to indirect
blocks, each of which contain 12 pointers to disk blocks. From the triply indirect block,
we can reach blocks 168 through 499 (with room to increase the file to block 1895).

The Bad Block Inode
Linux keeps track of bad sectors in an inode called the bad block inode. The root inode is inode
2, and the bad block inode is inode 1. To find bad blocks on your Linux computer, you can use the
badblocks
command, although you must log in as root to do so. Linux includes two other commands that
supply bad block information: mke2fs and e2fsck . The badblocks command can destroy
valuable data, but the mke2fs and e2fsck commands include safeguards that prevent them
from overwriting important information.

Inode-Related Commands

Links

af://n581
af://n583
af://n610

Hard Link

Inode

File Symbolic Link a.k.a Soft Link

File

Inode

Hard Link Soft Link

ln ~/demo.txt ./demo-hard.txt sudo ln -s ~/demo.text ~/var/www/demo-soft.txt

A hard link is a pointer that allows accessing the same file by different filenames
(Rute-Users-Guide/Linux Dictionary V 0.16, www.tldp.org/LDP/Linux-Dictionary/html/
index.html). The filenames refer to the same inode and physical location on a drive.
Originally, hard links were used so that people with different logins could access the
same physical file. If one person changed the file, the changes would be apparent when
another user opened the file.

The main requirement is that all files pointing to the same inode have to be on the same physical
drive, not on another volume. Inside each inode is a field called link count that specifies the
number of hard links. The link count for directories is higher than for other file types. If two files
have the same inode number, the link count is two. If one file is deleted, the link count drops by
one. When To see the contents of a directory, you use the ls -a command. The first two items
are . (called “dot”), which refers to the directory, and .. (called “dot-dot”), which refers to the parent
directory (see Figure 7-5). Both dot and dot-dot count as links, so most directories have at least
two hard links. Every subdirectory has a dot-dot
reference to the corresponding parent directory; therefore, each one adds to the parent
directory’s link count.

Symbolic links (also known as “soft links” or “symlinks”) are simply pointers to other files and
aren’t included in the link count. Unlike hard links, they can point to items on other drives or other
parts of the network; they simply need an absolute path. Symbolic links have an inode of their
own, which isn’t the same as the inode of the item they’re pointing to. Unlike hard links, they
depend on the continued existence of the destination they’re pointing to, and they’re easier to
identify on a running Linux system than hard links are. Unlike hard links, which point to their
destination with an inode number, symbolic links identify their destination by name and path. If a
name and path no longer exist, the symbolic link stops working. You create symbolic links with the
ln -s command.

Commands for Hard Links & Soft Links

Filesystem Hierarchy Standard
Conforming to the Filesystem Hierarchy Standard (FHS), Version 3.0, published March 19, 2015 (ht
tps://refspecs.linuxfoundation.org/fhs.shtml).

http://www.tldp.org/LDP/Linux-Dictionary/html/
af://n615
af://n623
https://refspecs.linuxfoundation.org/fhs.shtml

Directory Description

/
This is the root directory. This is where the whole
tree starts.

/bin

This directory contains executable programs which
are needed in single user mode and to bring the
system up or repair it.

/boot

Contains static files for the boot loader. This
directory holds only the files which are needed
during the boot process. The map installer and
configuration files should go to /sbin and /etc .
The operating system kernel (initrd for example)
must be located in either / or /boot .

/dev
Special or device files, which refer to physical
devices.

/etc

Contains configuration files which are local to the
machine. Some larger software packages, like X11,
can have their own subdirectories below /etc .
Site-wide configuration files may be placed here or
in /usr/etc . Nevertheless, programs should
always look for these files in /etc and you may
have links for these files to /usr/etc .

/etc/opt
Host-specific configuration files for add-on
applications installed in /opt .

/etc/sgml
This directory contains the configuration files for
SGML (optional).

/etc/skel

When a new user account is created, files from this
directory are usually copied into the user's home
directory.

/etc/X11
Configuration files for the X11 window system
(optional).

/etc/xml
This directory contains the configuration files for
XML (optional).

/home

On machines with home directories for users,
these are usually beneath this directory, directly or
not. The structure of this directory depends on
local administration decisions (optional).

/lib

This directory should hold those shared libraries
that are necessary to boot the system and to run
the commands in the root filesystem.

/lib<qual>

These directories are variants of /lib on system
which support more than one binary format
requiring separate libraries (optional).

Directory Description

/lib/modules Loadable kernel modules (optional).

/lost+found

This directory contains items lost in the filesystem.
These items are usually chunks of files mangled as
a consequence of a faulty disk or a system crash.

/media

This directory contains mount points for
removable media such as CD and DVD disks or
USB sticks. On systems where more than one
device exists for mounting a certain type of media,
mount directories can be created by appending a
digit to the name of those available above starting
with '0', but the unqualified name must also exist.

/media/floppy[1-9] Floppy drive (optional).

/media/cdrom[1-9] CD-ROM drive (optional).

/media/cdrecorder[1-9] CD writer (optional).

/media/zip[1-9] Zip drive (optional).

/media/usb[1-9] USB drive (optional).

/mnt

This directory is a mount point for a temporarily
mounted filesystem. In some distributions, /mnt
contains subdirectories intended to be used as
mount points for several temporary filesystems.

/opt
This directory should contain add-on packages that
contain static files.

/proc

This is a mount point for the proc filesystem, which
provides information about running processes and
the kernel. This pseudofilesystem is described in
more detail in proc(5).

/root
This directory is usually the home directory for the
root user (optional).

/run

This directory contains information which
describes the system since it was booted. Once
this purpose was served by /var/run and
programs may continue to use it.

/sbin

Like /bin , this directory holds commands needed
to boot the system, but which are usually not
executed by normal users.

/srv
This directory contains site-specific data that is
served by this system.

Directory Description

/sys

This is a mount point for the sysfs filesystem,
which provides information about the kernel like
/proc, but better structured, following the
formalism of kobject infrastructure.

/tmp

This directory contains temporary files which may
be deleted with no notice, such as by a regular job
or at system boot up.

/usr

This directory is usually mounted from a separate
partition. It should hold only shareable, read-only
data, so that it can be mounted by various
machines running Linux.

/usr/X11R6
The X-Window system, version 11 release 6
(present in FHS 2.3, removed in FHS 3.0).

/usr/X11R6/bin

Binaries which belong to the X-Window system;
often, there is a symbolic link from the more
traditional /usr/bin/X11 to here.

/usr/X11R6/lib Data files associated with the X-Window system.

/usr/X11R6/lib/X11

These contain miscellaneous files needed to run X;
Often, there is a symbolic link from /usr/lib/X11
to this directory.

/usr/X11R6/include/X11

Contains include files needed for compiling
programs using the X11 window system. Often,
there is a symbolic link from /usr/include/X11 to
this directory.

/usr/bin

This is the primary directory for executable
programs. Most programs executed by normal
users which are not needed for booting or for
repairing the system and which are not installed
locally should be placed in this directory.

/usr/bin/mh
Commands for the MH mail handling system
(optional).

/usr/bin/X11

is the traditional place to look for X11 executables;
on Linux, it usually is a symbolic link to
/usr/X11R6/bin .

/usr/dict Replaced by /usr/share/dict .

/usr/doc Replaced by /usr/share/doc .

Directory Description

/usr/etc

Site-wide configuration files to be shared between
several machines may be stored in this directory.
However, commands should always reference
those files using the /etc directory. Links from
files in /etc should point to the appropriate files
in /usr/etc .

/usr/games
Binaries for games and educational programs
(optional).

/usr/include Include files for the C compiler.

/usr/include/bsd BSD compatibility include files (optional).

/usr/include/X11

Include files for the C compiler and the X-Window
system. This is usually a symbolic link to
/usr/X11R6/include/X11 .

/usr/include/asm

Include files which declare some assembler
functions. This used to be a symbolic link to
/usr/src/linux/include/asm .

/usr/include/linux

This contains information which may change from
system release to system release and used to be a
symbolic link to /usr/src/linux/include/linux
to get at operating-system-specific information.
(Note that one should have include files there that
work correctly with the current libc and in user
space. However, Linux kernel source is not
designed to be used with user programs and does
not know anything about the libc you are using. It
is very likely that things will break if you let
/usr/include/asm and /usr/include/linux
point at a random kernel tree. Debian systems
don't do this and use headers from a known good
kernel version, provided in the libc*-dev package.)

/usr/include/g++ Include files to use with the GNU C++ compiler.

/usr/lib

Object libraries, including dynamic libraries, plus
some executables which usually are not invoked
directly. More complicated programs may have
whole subdirectories there.

/usr/libexec

Directory contains binaries for internal use only
and they are not meant to be executed directly by
users shell or scripts.

Directory Description

/usr/lib<qual>

These directories are variants of /usr/lib on
system which support more than one binary
format requiring separate libraries, except that the
symbolic link /usr/lib<qual>/X11 is not required
(optional).

usr/lib/X11

The usual place for data files associated with X
programs, and configuration files for the X system
itself. On Linux, it usually is a symbolic link to
/usr/X11R6/lib/X11 .

/usr/lib/gcc-lib
contains executables and include files for the GNU
C compiler, gcc(1).

/usr/lib/groff
Files for the GNU groff document formatting
system.

/usr/lib/uucp Files for uucp(1).

/usr/local
This is where programs which are local to the site
typically go.

/usr/local/bin Binaries for programs local to the site.

/usr/local/doc Local documentation.

/usr/local/etc
Configuration files associated with locally installed
programs.

/usr/local/games Binaries for locally installed games.

/usr/local/lib Files associated with locally installed programs.

/usr/local/lib<qual>

These directories are variants of /usr/local/lib
on system which support more than one binary
format requiring separate libraries (optional).

/usr/local/include Header files for the local C compiler.

/user/local/info
Info pages associated with locally installed
programs.

/usr/local/man
Man pages associated with locally installed
programs.

/usr/local/sbin
Locally installed programs for system
administration.

/usr/local/share
Local application data that can be shared among
different architectures of the same OS.

/usr/local/src Source code for locally installed software.

/usr/man Replaced by /usr/share/man .

Directory Description

/usr/sbin

This directory contains program binaries for
system administration which are not essential for
the boot process, for mounting /usr , or for
system repair.

/usr/share

This directory contains subdirectories with specific
application data, that can be shared among
different architectures of the same OS. Often one
finds stuff here that used to live in /usr/doc or
/usr/lib or /usr/man .

/usr/share/color

Contains color management information, like
International Color Consortium (ICC) Color profiles
(optional).

/usr/share/dict
Contains the word lists used by spell checkers
(optional).

/usr/share/dict/words List of English words (optional).

/usr/share/doc
Documentation about installed programs
(optional).

/usr/share/games Static data files for games in /usr/games (optional).

/usr/share/info Info pages go here (optional).

/usr/share/locale Locale information goes here (optional).

/usr/share/man
Manual pages go here in subdirectories according
to the man page sections.

/usr/share/man/<locale>/man[1-9]

These directories contain manual pages for the
specific locale in source code form. Systems which
use a unique language and code set for all manual
pages may omit the substring.

/usr/share/misc
Miscellaneous data that can be shared among
different architectures of the same OS.

/usr/share/nls
The message catalogs for native language support
go here (optional).

/usr/share/ppd Postscript Printer Definition (PPD) files (optional).

/usr/share/sgml Files for SGML (optional).

/usr/share/sgml/docbook DocBook DTD (optional).

/usr/share/sgml/tei TEI DTD (optional).

/usr/share/sgml/html HTML DTD (optional).

/usr/share/sgml/mathml MathML DTD (optional).

Directory Description

/usr/share/terminfo The database for terminfo (optional).

/usr/share/tmac
Troff macros that are not distributed with groff
(optional).

/usr/share/xml Files for XML (optional).

/usr/share/xml/docbook DocBook DTD (optional).

/usr/share/xml/xhtml XHTML DTD (optional).

/usr/share/xml/mathml MathML DTD (optional).

/usr/share/zoneinfo Files for timezone information (optional).

/usr/src

Source files for different parts of the system,
included with some packages for reference
purposes. Don't work here with your own projects,
as files below /usr should be read-only except
when installing software (optional).

/usr/src/linux

This was the traditional place for the kernel source.
Some distributions put here the source for the
default kernel they ship. You should probably use
another directory when building your own kernel.

/usr/tmp

Obsolete. This should be a link to /var/tmp . This
link is present only for compatibility reasons and
shouldn't be used.

/var
This directory contains files which may change in
size, such as spool and log files.

/var/account Process accounting logs (optional).

/var/adm
This directory is superseded by /var/log and
should be a symbolic link to /var/log .

/var/backups Reserved for historical reasons.

/var/cache Data cached for programs.

/var/cache/fonts Locally-generated fonts (optional).

/var/cache/man Locally-formatted man pages (optional).

/var/cache/www WWW proxy or cache data (optional).

/var/cache/<package> Package specific cache data (optional).

/var/catman/cat[1-9] or
/var/cache/man/cat[1-9]

These directories contain preformatted manual
pages according to their man page section. (The
use of preformatted manual pages is deprecated.)

/var/crash System crash dumps (optional).

Directory Description

/var/cron Reserved for historical reasons.

/var/games Variable game data (optional).

/var/lib Variable state information for programs.

/var/lib/color
Variable files containing color management
information (optional).

/var/lib/hwclock State directory for hwclock (optional).

/var/lib/misc Miscellaneous state data.

/var/lib/xdm X display manager variable data (optional).

/var/lib/<editor> Editor backup files and state (optional).

/var/lib/<name>
These directories must be used for all distribution
packaging support.

/var/lib/<package> State data for packages and subsystems (optional).

/var/lib/<pkgtool> Packaging support files (optional).

/var/local Variable data for /usr/local .

/var/lock

Lock files are placed in this directory. The naming
convention for device lock files is LCK.. where is the
device's name in the filesystem. The format used is
that of HDU UUCP lock files, that is, lock files
contain a PID as a 10-byte ASCII decimal number,
followed by a newline character.

/var/log Miscellaneous log files.

/var/opt Variable data for /opt .

/var/mail Users' mailboxes. Replaces /var/spool/mail .

/var/msgs Reserved for historical reasons.

/var/preserve Reserved for historical reasons.

/var/run

Run-time variable files, like files holding process
identifiers (PIDs) and logged user information
(utmp). Files in this directory are usually cleared
when the system boots.

/var/spool Spooled (or queued) files for various programs.

/var/spool/at Spooled jobs for at(1).

/var/spool/cron Spooled jobs for cron(8).

/var/spool/lpd Spooled files for printing (optional).

/var/spool/lpd/printer Spools for a specific printer (optional).

Directory Description

/var/spool/mail Replaced by /var/mail .

/var/spool/mqueue Queued outgoing mail (optional).

/var/spool/news Spool directory for news (optional).

/var/spool/rwhod Spooled files for rwhod(8) (optional).

/var/spool/smail
Spooled files for the smail(1) mail delivery
program.

/var/spool/uucp Spooled files for uucp(1) (optional).

/var/tmp
Like /tmp , this directory holds temporary files
stored for an unspecified duration.

/var/yp
Database files for NIS, formerly known as the Sun
Yellow Pages (YP).

Source: https://en.opensuse.org/Package_management

Package Management
Package managers are used to automate the process of installing, upgrading, configuring, and
removing programs. Package managers are also used for installing and managing modules for
languages such as Python, Ruby, etc.

A package is simply an archive that contains binaries of software, configuration files, and
information about dependencies.

How Package Management Systems Work
If a certain package requires a certain resource, such as a shared library, or another package, it is
said to have a dependency. All modern package management systems provide some method of
dependency resolution to ensure that when a package is installed, all of its dependencies are
installed as well.

Package Tools
To perform the task of package management effectively, be aware of these two types of available
utilities:

Low-Level tools
High-Level tools

af://n1057
af://n1060
af://n1064

Distribution Low Level Tool High Level Tool

Debian and derivatives dpkg apt-get / aptitude

CentOS rpm yum

openSUSE rpm zypper

Usage of Low-Level Tools
Installing a packages from a compiled (*.deb or *.rpm) file
Upgrading a package from a compiled file
Listing installed packages
Finding out which package installed a file

Usage of High-Level Tools
Searching for a package

Installing a package from a repository

Removing a package

Function apt apt-get

Display package information dpkg list list

Find available packages apt-cache search search

Display package information
apt-cache show , dpkg-
query --list

show

Install software packages install install

Remove software packages remove remove

Remove no longer needed packages autoremove autoremove

Update sources list (updates the
repositories that are in use)

update update

Upgrade installed packages dist-upgrade upgrade

Upgrade installed packages,
removing packages to avoid conflicts

dist-upgrade full-upgrade

Edit repository list
Open
/etc/apt/sources.list in
text editor

edit

sources

Displaying information about a package

Table 1: apt and apt-get Compared

Restrict repository list at /etc/apt/sources.list to the continental United States:

af://n1088
af://n1098
af://n1109

When you install software in Linux, dependencies (the necessary libraries and utilities) are added
automatically. Years ago, the Debian package system was the first to include this feature, and a
whole ecosystem of utilities has grown up around it. Soon after, most other distributions added
their own dependency-resolving features. Today, software installations rarely fail because a
dependency wasn't installed. The dreaded "dependency hell" is mostly a thing of the past, unless
you try to install from poorly maintained third-party sources or mix packages from different
repositories.

Linux includes far too many different package managers to cover them all in a single article.
Presented here are only the most widely used ones, from Debian and Fedora, along with the so-
called universal package managers.

Debian and Debian Derivatives

Aptitude stuff

Apt archives path

List services

Debian and derivatives like Linux Mint and Ubuntu manage packages with dpkg . Many graphical
interfaces are available, but for complete control, the only practical solution is the dpkg front
end, Advanced Package Tool (APT). APT can be configured from /etc/apt/preferences , although
most people prefer to configure it through sub-commands and options.

The apt command combines the basic options of apt-get and popular utilities such as apt-
cache into a single command and adds a progress bar. If you ever need the old tools, or simply
prefer them, they are still installed by default.

Unlike most commands, apt and apt-get consist of three parts separated by spaces: the basic
apt-get command, a sub-command, and the packages involved in the operation. In practice, apt
rarely needs options, having folded a few common ones into sub-commands.

A sub-command must always be present for both apt and apt-get , but for some maintenance
tasks, you do not need a specific list of packages. To include multiple packages, either list the
packages separated by a space or use regular expressions, such as the asterisk, although doing so
can make troubleshooting more difficult and sometimes lead to unforeseen results.

sudo sed -i -e 's/http:\/\/us.archive/mirror:\/\/mirrors/' -e 's
/\/\ubuntu\//\/mirrors.txt/' /etc/apt/sources.list

aptitude search mysql # Look for something
dpkg -S `which tsclient` # What package does it belong to?
dpkg -L aria2c # What does this package provide?
dpkg -i *.deb # Install a deb file
dpkg -s nodejs # Show info

dpkg --get-selections # list installed packages

/var/cache/apt/archives

service --status-all

af://n1159
af://n1160
af://n1162
af://n1164

If the packages to install are related, look for a metapackage, which is a dummy package meant to
simplify the installation of large applications that are split into more than one package. For
instance, to run the Gnome desktop environment in Debian, gnome saves you the effort of
installing dozens of packages separately. To see whether a metapackage exists for your purposes,
search online in your distro's repositories; if all else fails, guess its name, and see whether you are
successful.

Depending on whether you are using apt-get or apt , the basic command for adding or
upgrading a software package is either

or

Deleting a package uses the same structure, except the sub-command is remove .

Both apt and apt-get usually start with a complete summary of what will happen if you go
through with the installation, including the dependencies that will be installed, the packages that
will be upgraded and removed, and the amount of disk space that will be required.

How to Use Git
Download for Linux and Unix
It is easiest to install Git on Linux using the preferred package manager of your Linux distribution.
If you prefer to build from source, you can find tarballs on kernel.org. The latest version is
2.34.1.

Debian/Ubuntu

For the latest stable version for your release of Debian/Ubuntu

For Ubuntu, this Personal Package Archive (PPA) provides the latest stable upstream Git version

Fedora

yum install git (up to Fedora 21)
dnf install git (Fedora 22 and later)

Gentoo

apt-get install options <packagename>

apt install <packagename>

apt-get install git

add-apt-repository ppa:git-core/ppa``# apt update; apt install git

emerge --ask --verbose dev-vcs/git

af://n1177
af://n1178
https://www.kernel.org/pub/software/scm/git/
https://www.kernel.org/pub/software/scm/git/git-2.34.1.tar.gz
af://n1180
af://n1185
af://n1187

Arch Linux

openSUSE

Mageia

Nix/NixOS

FreeBSD

Solaris 9/10/11 (OpenCSW)

Solaris 11 Express

OpenBSD

Alpine

Red Hat Enterprise Linux, Oracle Linux, CentOS, Scientific
Linux, et al.

RHEL and derivatives typically ship older versions of git. You can download a tarball and build
from source, or use a 3rd-party repository such as the IUS Community Project to obtain a more
recent version of git.

pacman -S git

zypper install git

urpmi git

nix-env -i git

pkg install git

pkgutil -i git

pkg install developer/versioning/git

pkg_add git

$ apk add git

af://n1189
af://n1191
af://n1193
af://n1195
af://n1197
https://www.opencsw.org/
af://n1199
af://n1201
af://n1203
af://n1205
af://n1207
https://www.kernel.org/pub/software/scm/git/
https://ius.io/

Slitaz

Git via Git
 If you already have Git installed, you can get the latest development version via Git itself:

 You can also always browse the current contents of the git repository using the web interface.

The follow information on how to use Git is from a blog post at The Bare Minimum You Need To
Know To Work With Git. My thanks to Michael J Swart for this.

Initial Setup

One-time tasks include downloading git and signing up for github or bitbucket. My team uses
github, but yours might use gitlab, bitbucket or something else.

Here’s my typical workflow. Say I want to work on some files in a project on a remote server:

Clone a Repository

My first step is to find the repository for the project. Assuming I’m not starting a project from
scratch, I find and copy the location of the repository from a site like github or bitbucket. So the
clone command looks like this:

This downloads all the files so I have my own copy to work with.

$ tazpkg get-install git

 git clone https://github.com/git/git

git clone https://github.com/SomeProject/SomeRepo.git

af://n1209
af://n1211
https://github.com/git/git
https://michaeljswart.com/2018/07/the-bare-minimum-you-need-to-know-to-work-with-git/
af://n1216
https://git-scm.com/downloads
https://github.com/join
https://bitbucket.org/account/signup/
af://n1219

Create a Branch

Next I create a branch. Branches are “alternate timelines” for a repository. The real timeline or
branch is called master. One branch can be checked out at a time, so after I create a branch, I
check out that branch. In the diagram, I’ve indicated the checkout branch in bold. I like to
immediately push that branch back to the remote server. I can always refer to the remote server
as “origin”. All this is done with these commands:

Change Stuff

Now it’s time to make changes. This has nothing to do with git but it’s part of my workflow. In my
example here I’m adding a file B.txt .

Stage Changes

These changes aren’t part of the branch yet though! If I want them to be part of the branch. I have
to commit my changes. That’s done in two parts. The first part is to specify the changes I want to
commit. That’s called staging and it’s done with git add . I almost always want to commit
everything, so the command becomes:

git branch myBranch
git checkout myBranch
git push -u origin myBranch

git add *

af://n1223
af://n1227
af://n1229

Commit Changes

The second part is to actually commit the files to the branch with a commit message:

Push Changes

I’m happy with the changes I made to my branch so I want to share them with the rest of the
world starting with the remote server.

git commit -m "my commit message"

git push origin myBranch

af://n1233
af://n1237

Create a Pull Request and Merge to master

In fact I’m so happy with these changes, I want to include them in master, the real timeline. But
not so fast! This is where collaboration and teamwork become important. I create a pull request
and then if I get the approval of my teammates, I can merge.

It sounds like a chore, but luckily I don’t have to memorize any git commands for this step
because of sites like github or bitbucket. They have a really nice web site and UI where teams can
discuss changes before approving them. Once the changes are approved and merged, master
now has the changes.

Once it’s merged. Just to complete the circle, I can pull the results of the merge back to my own
computer with a pull

git pull git checkout master

af://n1241

Other Use Cases

Where Am I?
 To find out where I am in my workflow, I like to use:

This one command can tell me what branch I’m on. Whether there are changes that can be
pushed or pulled. What files have changed and what changes are staged.

Merge Conflicts
 With small frequent changes, merge conflicts become rare. But they still happen. Merge conflicts
are a pain in the neck and to this day I usually end up googling “resolving git merge conflicts”.

Can’t this Be Easier?

There are so many programs and utilities available whose only purpose is to make this stuff
easier. But they don’t. They make some steps easy, and some steps impossible. Whenever I really
screw things up, I delete everything and start from scratch at the cloning step. I find I have to do
that more often when I use a tool that was supposed to make my life easier.

One Exception
 The only exception to this rule is Visual Studio Code. It’s a real treat to use. I love it.

Maybe you like the command line. Maybe you have a favorite “git-helper” application. No matter
how you use git, in every case, you still have to understand the workflow you’re using and that’s
what I’ve tried to describe here.

Where To Next

If you want to really get good at this stuff. I recently learned of a great online resource (thanks
Cressa!) at https://learngitbranching.js.org/. It’s a great interactive site that teaches more about
branching. You will very quickly learn more than the bare minimum required. I recommend it.

Git
 Is the world's most advanced distributed version control system

Supplementary Instructions

git status

af://n1247
af://n1252
https://code.visualstudio.com/
af://n1256
https://learngitbranching.js.org/
af://n1258
af://n1260

Many people know that Linus created the open source Linux in 1991. Since then, the Linux system
has continued to develop and has become the largest server system software. Although Linus
created Linux, the growth of Linux depends on the participation of enthusiastic volunteers all over
the world. With so many people writing code for Linux all over the world, how is the Linux code
managed? The fact is that before 2002, volunteers around the world sent source code files to
Linus through diff, and Linus himself merged the code manually!

You might be thinking, why doesn't Linus put Linux code in a version control system? Isn't there a
free version control system like CVS and SVN? Because Linus is staunchly against CVS and SVN,
these centralized version control systems are slow and must be networked to use. There are
some commercial version control systems. Although they are easier to use than CVS and SVN,
they are paid and do not match the open source spirit of Linux.

However, by 2002, the Linux system had been developed for ten years, and the size of the code
base made it difficult for Linus to continue to manage it manually. Brothers in the community also
expressed strong dissatisfaction with this method, so Linus chose a commercial version control
system, BitKeeper. The owner of BitKeeper, BitMover, out of humanitarian spirit, authorizes the
Linux community to use this version control system free of charge.

(The following paragraph is from Wikipedia.) Git development began in April 2005, after many
developers of the Linux kernel gave up access to BitKeeper, a proprietary source-control
management (SCM) system that they had been using to maintain the project since 2002.[13][14]
The copyright holder of BitKeeper, Larry McVoy, had withdrawn free use of the product after
claiming that Andrew Tridgell had created SourcePuller by reverse engineering the BitKeeper
protocols.[15] BitMover was angry and wanted to take back the free use rights of the Linux
community. The same incident also spurred the creation of another version-control system,
Mercurial.

Git quickly became the most popular distributed version control system, especially in 2008, when
the GitHub website went live, it provided free Git storage for open source projects, and countless
open source projects began to migrate to GitHub, including jQuery, PHP, Ruby, and more.

History is such a coincidence. If BitMover hadn't threatened the Linux community, we might not
have free and super easy-to-use Git now.

List of common Git commands

Options

git [--version] [--help] [-C <path>] [-c name=value]

 [--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]

 [-p | --paginate | --no-pager] [--no-replace-objects] [--bare]

 [--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]

 <command> [<args>]

 add # adds file contents to the index

 bisect # introduces erroneous changes via binary lookup

 branch # list, create or delete branches

https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/BitKeeper
https://en.wikipedia.org/wiki/Git#cite_note-14
https://en.wikipedia.org/wiki/Git#cite_note-linux.com44147-15
https://en.wikipedia.org/wiki/Larry_McVoy
https://en.wikipedia.org/wiki/Andrew_Tridgell
https://en.wikipedia.org/wiki/SourcePuller
https://en.wikipedia.org/wiki/Reverse_engineering
https://en.wikipedia.org/wiki/Git#cite_note-16
https://en.wikipedia.org/wiki/Mercurial
https://github.com/jaywcjlove/git-tips
af://n1267
af://n1269

example

init

 git init # initialization

status

git status # Get status

add

git add file # . or * means add all

 checkout # Check out a branch or path to the working tree

 clone # clones the repository into a new directory

 commit # records the changes to the repository

 diff # shows changes between commits, commits and working tree etc.

 fetch # downloads objects and references from another repository

 grep # print lines matching the pattern

 init # creates an empty Git repository or reinitializes an existing
one

 log # shows the commit log

 merge # join two or more development histories

 mv # move or rename a file, directory or symbolic link

 pull # fetch and merge from another repository or local branch

 push # updates remote references and related objects

 rebase # forwards port local commits to updated upstream headers

 reset # resets the current HEAD to the specified state

 rm # removes files from working tree and index

 show # displays various types of objects

 status # Show working tree status

 tag # Create, list, delete or verify tag objects signed with GPG

af://n1271
af://n1272
af://n1274
af://n1276

rm

git rm --cached <added_file_to_undo> # undo the git add operation before commit

reset

 git reset head # seems to be more convenient than the above git rm --cached

commit

git commit -m "message" #Pay attention to garbled characters here

remote

git remote add origin git@github.com:JSLite/test.git # Add source

push

git push -u origin master # push colleagues to set the default tracking branch

 git push origin master

 git push -f origin master # Force push files, abbreviated -f (full write --force)

clone

git clone git://github.com/JSLite/JSLite.js.git

 git clone git://github.com/JSLite/JSLite.js.git mypro #Clone to custom folder

 git clone [user@]example.com:path/to/repo.git/ # There is another way of writing
the SSH protocol.

git clone supports multiple protocols, in addition to HTTP(s), it also supports SSH, Git, local file
protocol, etc. Here are some examples.

git clone <URL of repository> <local directory name>

$ git clone http[s]://example.com/path/to/repo.git/

$ git clone ssh://example.com/path/to/repo.git/

$ git clone git://example.com/path/to/repo.git/

$ git clone /opt/git/project.git

$ git clone file:///opt/git/project.git

$ git clone ftp[s]://example.com/path/to/repo.git/

$ git clone rsync://example.com/path/to/repo.git/

configure

 The first is to configure the account information ssh -T git@github.com test.

af://n1278
af://n1280
af://n1282
af://n1284
af://n1286
af://n1290
af://n1303
mailto:git@github.com

Modify personal information in a project

git help config # Get help information and view the parameters for
modifying personal information

git config --global user.name "little brother tune" # Modify the global name

 git config --global user.email "wowohoo@qq.com" # Modify the global mailbox

 git config --list # View configuration information

Configure word wrapping

 The automatic conversion pit is too large, and submitting to git automatically converts newlines
to lf

git config --global core.autocrlf input

Common usage scenarios

Create SSH keys

 This key is used to communicate with github, generated in the local terminal and uploaded to
github.

Multi-account ssh configuration

1. Generate a key with the specified name.

2. Copy the key to the hosting platform.

Open the public key file jslite_rsa.pub and copy the content to the code hosting platform

 \3. Modify the config file

 vim ~/.ssh/config #Modify the config file, if no config is created

 Host-jslite.github.com

 HostName github.com

ssh-keygen -t rsa -C 'wowohoo@qq.com' # Generate key
ssh-keygen -t rsa -C "wowohoo@qq.com" -f ~/.ssh/ww_rsa # Specify the name of the
generated directory file
ssh -T git@github.com # test whether it is
successful

ssh-keygen -t rsa -C "email address" -f ~/.ssh/jslite_rsa # 2 files,
jslite_rsa and jslite_rsa.pub, are generated.

vim ~/.ssh/jslite_rsa.pub

af://n1305
af://n1310
af://n1313
af://n1314
af://n1317

 User git

 IdentityFile ~/.ssh/jslite_rsa

 Hostwork.github.com

 HostName github.com

 # Port server open-ssh port (default: 22, this line is generally not written by default)

 # PreferredAuthentications Configure which authorization authentication to use when logging in

 # publickey|password publickey|keyboard-interactive, etc.

 User git

 IdentityFile ~/.ssh/work_rsa

 Host is an alias here, you can name it whatever you want

 HostName is generally a website such as: git@ss.github.com:username/repo.git Fill in github.com

 User usually fills in git

 The public key file address used by IdentityFile

 \4. Test

 ssh -T git@jslite.github.com # @ followed by the defined Host

 ssh -T work.github.com # pass alias test

 ssh -i ~/public key file address Host alias # Such as ssh -i ~/.ssh/work_rsa work.github.com

 \5. Use

 # Original spelling

 git clone git@github.com:/learngit.git

 # present writing

 git clone git@jslite.github.com:/learngit.git

 git clone git@work.github.com:<work's username>/learngit.git

 \5. Pay attention

 If you change the name of id_rsa, you need to add the ssh key to the SSH agent, like:

 ssh-add ~/.ssh/jslite_rsa

 ssh-add -l # View all keys

 ssh-add -D # delete all keys

 ssh-add -d ~/.ssh/jslite_rsa # delete the specified key

mailto:git@ss.github.com
mailto:git@jslite.github.com
mailto:git@github.com
mailto:git@jslite.github.com
mailto:git@work.github.com

 Log in to a remote server without a password

 $ ssh-keygen -t rsa -P '' -f ~/.ssh/aliyunserver.key

 $ ssh-copy-id -i ~/.ssh/aliyunserver.key.pub root@192.168.182.112 # Here you need to enter the
password once

 Edit ~/.ssh/config

 Host aliyun1

 HostName 192.168.182.112

 User root

 PreferredAuthentications publickey

 IdentityFile ~/.ssh/aliyunserver.key

 After the above configuration is complete, you can log in through the command without entering
the IP address and password ssh aliyun1

 Submit code under https protocol without password

 git clone https://github.com/username/rep.git

 Cloning through the above method may require a password, the solution: enter the currently
cloned project vi rep/.git/config to edit the config, and modify it in the following way, you can
submit the code without entering the password.

 [core]

 repositoryformatversion=0

 filemode=true

 bare = false

 logallrefupdates=true

 ignorecase = true

 precomposeunicode=true

 [remote "origin"]

 - url=https://github.com/username/rep.git

 + url = https://username:password@github.com/username/rep.git

 fetch = +refs/heads/:refs/remotes/origin/

 [branch "master"]

 remote = origin

 merge = refs/heads/master

 File push to 3 git repositories

 \1. Add 3 remote library addresses

https://github.com/username/rep.git
https://github.com/username/rep.git
https://username:password@github.com/username/rep.git

 git remote add origin https://github.com/JSLite/JSLite.git

 git remote set-url --add origin https://gitlab.com/wang/JSLite.js.git

 git remote set-url --add origin https://oschina.net/wang/JSLite.js.git

 \2. Delete one of the set-url addresses

 usage: git remote set-url [--push] []

 or: git remote set-url --add

 or: git remote set-url --delete

 git remote set-url --delete origin https://oschina.net/wang/JSLite.js.git

 \3. Push code

 git push origin master

 git push -f origin master # Force push

 \4. Pull the code

 Only one url address in origin can be pulled, this fetch-url

 Defaults to the first address you add to origin

 git pull origin master

 git pull --all # Get all remote content including tags

 git pull origin next:master # Retrieve the next branch of the origin host and merge it with the
local master branch

 git pull origin next # The remote branch is merged with the current branch

 # The above command is equivalent to the following two commands

 git fetch origin

 git merge origin/next

 If the remote host deletes a branch, by default, git pull will not delete the corresponding local
branch when pulling the remote branch. This is to prevent git pull from unknowingly deleting the
local branch due to someone else operating the remote host.

 However, you can change this behavior by adding the parameter -p to delete the remote deleted
branch locally.

 $ git pull -p

https://github.com/JSLite/JSLite.git
https://gitlab.com/wang/JSLite.js.git
https://oschina.net/wang/JSLite.js.git
https://oschina.net/wang/JSLite.js.git

 # Equivalent to the following command

 $ git fetch --prune origin

 $ git fetch -p

 \5. Change the pull

 Just change the order of the three urls in the config file, and the fetch-url will directly correspond
to the first utl connection.

 Modify the remote warehouse address

 git remote remove origin # delete the remote path

 git remote add origin git@jslite.github.com:JSLite/JSLite.git # Add remote path

 Undo a remote record

 git reset --hard HEAD~1 # undo a record

 git push -f origin HEAD:master # Sync to remote repository

 Discard local file modifications

 git reset --hard FETCH_HEAD # FETCH_HEAD represents the commit point formed after the last
successful git pull. then git pull

 Error with git reset --hard FETCH_HEAD

 git pull

 You are not currently on a branch, so I cannot use any

 'branch..merge' in your configuration file.

 Please specify which remote branch you want to use on the command

 line and try again (e.g. 'git pull ').

 See git-pull(1) FOR details.

 Solution:

 git checkout -b temp # New + switch to temp branch

 git checkout master

 Easiest to give up on local modifications

 # If there are any modifications and additions to the staging area

 git reset --hard

 # Restore all modifications, will not delete newly added files

 git checkout .

 # The following command will delete the newly added files

mailto:git@jslite.github.com

 git clean -xdf

 By storing the stash in the staging area, the local modification is discarded in the method of
deleting the staging area.

 git stash && git stash drop

 rollback to a commit

 git revert HEAD~1 # undoing a record will pop up commit edit

 git push # commit rollback

 fall back to a certain version

 git reset --hard

 # eg git reset --hard a3hd73r

 # --hard stands for discarding the modification of the workspace, so that the workspace is exactly
the same as the version code, corresponding to it,

 # The --soft parameter represents the modification of the reserved workspace.

 remove a commit

 # The essence is to create a new commit that is completely opposite to the original, offsetting the
effect of the original commit

 git revert

 Create an empty branch

 # The new branch (gh-pages) in this way has no commit record

 git checkout --orphan gh-pages

 # Delete the original content of the newly created gh-pages branch. If it is not deleted, the
commit will be used as the first commit of the current branch

 git rm -rf .

 # Check the status It is possible that the above command did not delete the files that have not
been submitted

 git state

 Merge multiple commits

 # This command merges the last 4 commits into 1, HEAD represents the current version.

 # Will enter the VIM interface, you can modify the submission information.

 git rebase -i HEAD~4

 # You can see that it is divided into two parts, the uncommented part above is to fill in the
instructions to be executed,

 # And the part of the comment below is the prompt description of the command. The command
part consists of the preceding command name, commit hash and commit message

 # Currently we only need to know the two commands pick and squash.

 # --> pick means to execute this commit

 # --> squash means that this commit will be merged into the previous commit

 # We change the command in front of the commit that we need to keep to squash or s, then
enter :wq to save and exit

 # This is the edit interface where we will see the commit message

 # Among them, the non-comment part is the two commit messages, all you have to do is to
modify these two into new commit messages.

 #

 # Enter wq to save and launch, enter git log again to view the commit history information, you
will find that these two commits have been merged.

 # Force push changes to the frontend

 git push -f origin master

 Modify remote Commit records

 git commit --amend

 # amend can only modify the last commit record that has not been submitted online

 git rebase -i HEAD~3

 # Indicates that you want to modify the penultimate state of the current version

 # Change the first word pick of the record line to be changed to edit

 pick 96dc3f9 doc: Update quick-start.md

 pick f1cce8a test(Transition): Add transition test (#47)

 pick 6293516 feat(Divider): Add Divider component.

 # Rebase eeb03a4..6293516 onto eeb03a4 (3 commands)

 #

 # Commands:

 # p, pick = use commit

 # r, reword = use commit, but edit the commit message

 # e, edit = use commit, but stop for amending

 # s, squash = use commit, but meld into previous commit

 # f, fixup = like "squash", but discard this commit's log message

 # x, exec = run command (the rest of the line) using shell

 # d, drop = remove commit

 Save and exit, the following prompt will pop up

 # You can amend the commit now, with

 #

 # git commit --amend

 #

 # Once you are satisfied with your changes, run

 #

 # git rebase --continue

 # Enter the edit page to change the commit through this command, save and exit

 git commit --amend

 # Save and exit to confirm the modification, continue to execute rebase,

 git rebase --continue

 # If multiple records are modified, execute the above two commands repeatedly until all
modifications are completed

 # Finally, make sure that others have not submitted for push, it is best not to add -f to force push

 git push -f origin master

 Add ignore file

 echo node_modules/ >> .gitignore

 Close an issue with commit

 This function can be played on Github, but not on very old versions on Gitlab, so how to close an
issue with a commit? When confirm merge, you can use the following command to close related
issues:

 fixes #xxx, fixed #xxx, fix #xxx, closes #xxx, close #xxx, closed #xxx,

 Synchronize the fork's upstream repository

 Github tutorial synchronization fork tutorial, synchronize a branch (fork) on Github

 Set to add multiple remote warehouse addresses.

 Before synchronizing, you need to create a remote point to point to the upstream repository
(repo). If you have forked an original repository, you can do as follows.

 $ git remote -v

 # List the current remotes (list the current remote warehouse)

 # origin https://github.com/user/repo.git (fetch)

https://github.com/user/repo.git

 # origin https://github.com/user/repo.git (push)

 $ git remote add upstream https://github.com/otheruser/repo.git

 # Set a new remote

 $ git remote -v

 # Verify new remote

 # origin https://github.com/user/repo.git (fetch)

 # origin https://github.com/user/repo.git (push)

 # upstream https://github.com/otheruser/repo.git (fetch)

 # upstream https://github.com/otheruser/repo.git (push)

 Synchronously update warehouse contents

 Syncing the upstream repository to your repository requires two steps: first you need to pull
from the remote, then you need to merge the branch you want to your local copy branch. Pull
branches and their respective commits from the upstream repository. master will be stored in the
local branch upstream/master

 git fetch upstream

 # remote: Counting objects: 75, done.

 # remote: Compressing objects: 100% (53/53), done.

 # remote: Total 62 (delta 27), reused 44 (delta 9)

 # Unpacking objects: 100% (62/62), done.

 # From https://github.com/ORIGINAL_OWNER/ORIGINAL_REPOSITORY

 # * [new branch] master -> upstream/master

 Check out your fork's local master branch

 git checkout master

 # Switched to branch 'master'

 Merge changes from upstream/master into the local master branch. This keeps your pre-fork's
master branch in sync with the upstream repository without losing your local changes.

 git merge upstream/master

 # Updating a422352..5fdff0f

 # Fast-forward

 # README | 9 -------

 # README.md | 7 ++++++

 # 2 files changed, 7 insertions(+), 9 deletions(-)

https://github.com/user/repo.git
https://github.com/otheruser/repo.git
https://github.com/user/repo.git
https://github.com/user/repo.git
https://github.com/otheruser/repo.git
https://github.com/otheruser/repo.git
https://github.com/ORIGINAL_OWNER/ORIGINAL_REPOSITORY

 # delete mode 100644 README

 # create mode 100644 README.md

 Batch modify names and email addresses in historical commits

 \1. Clone the repository

 Pay attention to the parameters, this is not an ordinary clone, the cloned warehouse cannot
participate in the development

 git clone --bare https://github.com/user/repo.git

 cd repo.git

 \2. Run the code from the command line

 OLD_EMAIL old email address

 CORRECT_NAME corrected name

 CORRECT_EMAILCorrected email

 Copy the following code to the command line to execute

 git filter-branch -f --env-filter '

 OLD_EMAIL="wowohoo@qq.com"

 CORRECT_NAME="Brother Tune"

 CORRECT_EMAIL="Corrected Email@qq.com"

 if ["$GIT_COMMITTER_EMAIL" = "$OLD_EMAIL"]

 then

 export GIT_COMMITTER_NAME="$CORRECT_NAME"

 export GIT_COMMITTER_EMAIL="$CORRECT_EMAIL"

 fi

 if ["$GIT_AUTHOR_EMAIL" = "$OLD_EMAIL"]

 then

 export GIT_AUTHOR_NAME="$CORRECT_NAME"

 export GIT_AUTHOR_EMAIL="$CORRECT_EMAIL"

 fi

 ' --tag-name-filter cat -- --branches --tags

 Implementation process

https://github.com/user/repo.git
mailto:wowohoo@qq.com
mailto:Email@qq.com

 Rewrite 160d4df2689ff6df3820563bfd13b5f1fb9ba832 (479/508) (16 seconds passed, remaining
0 predicted)

 Ref 'refs/heads/dev' was rewritten

 Ref 'refs/heads/master' was rewritten

 \3. Sync to remote warehouse

 Sync to push remote git repository

 git push --force --tags origin 'refs/heads/*'

 I also encountered the following error, lab protects the master branch by default, and does not
allow forced coverage. The Protected branches under the Project->Setting->Repository menu can
remove the protection of the master. After the modification, it is recommended to add the
protection of the master back. After all, pushing hard is not a good thing.

 remote: GitLab: You are not allowed to force push code to a protected branch on this project.

 When the above push does not go up, first git pull to ensure the latest code

 git pull --allow-unrelated-histories

 # or specify branch

 git pull origin master --allow-unrelated-histories

 View a file's history

 git log --pretty=oneline filename # list all change history of the file

 git show c178bf49 # The modification record of a certain change

 git log -p c178bf49 # The modification record of a certain change

 git blame filename # Show that each line of the file was last modified in that version.

 git whatchanged filename # Display the commit information of each version of a file: commit
date, commit person, version number, commit notes (no modification details)

 Build your own git command

 git config --global alias.st status

 git config --global alias.br branch

 git config --global alias.co checkout

 git config --global alias.ci commit

 When you enter the git command after configuration, you don't need to enter a long paragraph.
For example, if we want to check the status, just:

 git st

 Chinese garbled solution

 git config --global core.quotepath false

 New warehouse

 init

 git init #initialization

 status

 git status #Get status

 add

 git add file # . or * means add all

 git rm --cached <added_file_to_undo> # undo the git add operation before commit

 git reset head # seems to be more convenient than the above git rm --cached

 commit

 git commit -m "message" #Pay attention to garbled characters here

 remote

 git remote add origin git@github.com:JSLite/test.git #Add source

 push

 git push -u origin master # push colleagues to set the default tracking branch

 git push origin master

 git push -f origin master # Force push files, abbreviated -f (full write --force)

 clone

 git clone git://github.com/JSLite/JSLite.js.git

 git clone git://github.com/JSLite/JSLite.js.git mypro #Clone to custom folder

 git clone [user@]example.com:path/to/repo.git/ #There is another way of writing the SSH
protocol.

 git clone supports multiple protocols, in addition to HTTP(s), it also supports SSH, Git, local file
protocol, etc. Here are some examples. git clone

 $ git clone http[s]://example.com/path/to/repo.git/

 $ git clone ssh://example.com/path/to/repo.git/

mailto:git@github.com

 $ git clone git://example.com/path/to/repo.git/

 $ git clone /opt/git/project.git

 $ git clone file:///opt/git/project.git

 $ git clone ftp[s]://example.com/path/to/repo.git/

 $ git clone rsync://example.com/path/to/repo.git/

 local

 help

 git help config # Get help information

 add

 git add * # track new files

 git add -u [path] # Add a tracked file [under the specified path]

 rm

 rm *&git rm * # remove files

 git rm -f * # remove files

 git rm --cached * # untracking

 git mv file_from file_to # rename tracked files

 git log # View commit records

 commit

 git commit #Submit update

 git commit -m 'message' #Commit description

 git commit -a #Skip the use of the staging area and temporarily store all tracked files and submit
them together

 git commit --amend #Modify the last commit

 git commit log #View all commits, including commits without push

 git commit -m "#133" #Associate the issue with the # symbol and the issue number anywhere

 git commit -m "fix #133" commit closes the issue

 git commit -m 'Summary description'$'\n\n''1.Detailed description'$'\n''2.Detailed description'
#Commit brief description and detailed description

 reset

 git reset HEAD * # Cancel already staged files

 git reset --mixed HEAD * # same as above

 git reset --soft HEAD * # Reset to the specified state without modifying the index area and
working tree

 git reset --hard HEAD * # Reset to the specified state, which will modify the index area and
working tree

 git reset -- files * # reset index area files

 revert

 git revert HEAD # undo the previous operation

 git revert HEAD~ # undo the previous operation

 git revert commit # undo the specified operation

 checkout

 git checkout -- file # Cancel changes to the file (from the staging area - overwrite the worktree file)

 git checkout branch|tag|commit -- file_name # Take the file from the repository and overwrite
the current branch

 git checkout HEAD~1 [file] # will update working directory to match a commit

 git checkout -- . # Extract files from the staging area and overwrite the workspace

 git checkout -b gh-pages 0c304c9 # This means that the node with the current branch commit
hash value 0c304c9 is divided into a new branch gh-pages and switched to gh-pages

 diff

 git diff file # View the difference of the specified file

 git diff --stat # View simple diff results

 git diff # Compare the difference between Worktree and Index

 git diff --cached # Compare the difference between Index and HEAD

 git diff HEAD # Compare the difference between Worktree and HEAD

 git diff branch # Compare the differences between Worktree and branch

 git diff branch1 branch2 # Compare the differences between two branches

 git diff commit commit # Compare the differences between two commits

 git diff master..test # The above command only shows the difference between the two branches

 git diff master...test # You want to find the difference between the common parent branch of
'master', 'test' and the 'test' branch, you replace the first two '.' with 3 '.'

 stash

 git stash # Stash the workspace site (tracked files), and resume work after restoring it later.

 git stash list # View saved job sites

 git stash apply # restore the job site

 git stash drop # delete stash content

 git stash pop # Delete stash content directly while restoring

 git stash apply stash@{0} # Restore the specified job site, when you have saved more than one
job site.

 merge

 git merge --squash test # Merge and compress, compress the commit on test into one

 cherry-pick

 git cherry-pick commit # Pick merge, merge commit to current branch

 git cherry-pick -n commit # Pick multiple commits, after merging, you can continue to pick the
next commit

 rebase

 git rebase master # Rebase the commits ahead of the master point to the current branch

 git rebase --onto master 169a6 # Limit the rollback scope, rebase the commits of the current
branch from 169a6 onwards

 git rebase --interactive # Interactive mode, modify commit

 git rebase --continue # Continue merging after dealing with conflicts

 git rebase --skip # skip

 git rebase --abort # unmerge

 branch

 delete

 git push origin :branchName # delete remote branch

 git push origin --delete new # delete remote branch new

 git branch -d branchName # delete the local branch, force delete with -D

 git branch -d test # delete the local test branch

 git branch -D test # Force delete the local test branch

 git remote prune origin # The remote is deleted, and the remote existence can still be seen
locally. This command deletes the branch that does not exist in the remote

 submit

 git push -u origin branchName # Submit the branch to the remote origin host

 Pull

 git fetch -p #When pulling a remote branch, it is automatically cleaned up. The remote branch
has been deleted, and the corresponding branch with the same name still exists locally.

 branch merge

 git merge branchName # Merge branch - merge branch branchName and current branch

 git merge origin/master # Merge remote branch on local branch.

 git rebase origin/master # Merge the remote branch on the local branch.

 git merge test # Merge the test branch into the current branch

 Rename

 git branch -m old new #rename branch

 Check

 git branch # list local branches

 git branch -r # list remote branches

 git branch -a # list all branches

 git branch -v # View the information of the last commit object of each branch

 git branch --merge # View the branch that has been merged into the current branch

 git branch --no-merge # View the branch merged into the current branch

 git remote show origin # You can view the remote address, remote branch

 new

 git branch test # New test branch

 git branch newBrach 3defc69 # Specify the hash 3defc69, and the new branch name is newBrach

 git checkout -b newBrach origin/master # After retrieving updates from the remote host, create a
new branch based on it

 git checkout -b newBrach 3defc69 # Create a newBrach branch with the hash value 3defc69 and
switch to this branch

 connect

 git branch --set-upstream dev origin/dev # Link the local dev branch with the remote dev branch

 git branch --set-upstream master origin/next # Manually establish a tracking relationship

 branch switching

 git checkout test # switch to the test branch

 git checkout -b test # New + switch to test branch

 git checkout -b test dev # Create a new test branch based on dev and switch

 remote

 git fetch # fetch retrieves updates from all branches

 git fetch origin remotebranch[:localbranch] # Pull the branch from the remote [to the local
specified branch]

 git merge origin/branch # Merge the specified branch on the remote

 git pull origin remotebranch:localbranch # Pull the remote branch to the local branch

 git push origin branch # Push the current branch to the specified branch on the remote

 git push origin localbranch:remotebranch # Push the specified branch locally to the specified
branch on the remote

 git push origin :remotebranch # delete the specified remote branch

 git checkout -b [--track] test origin/dev # Based on the remote dev branch, create a new local test
branch [set tracking at the same time]

 submodule

 Clone the project and clone the submodule at the same time

 git clone https://github.com/jaywcjlove/handbook.git --depth=1 --recurse-submodules

 Clone the project, then manually clone the submodule subproject

https://github.com/jaywcjlove/handbook.git

 git submodule add --force 'warehouse address' 'path'

 # Among them, the warehouse address refers to the submodule warehouse address, and the
path refers to the path where the submodule is placed under the current project.

 # Note: The path cannot end with / (the modification will not take effect), it cannot be the existing
directory of the existing project (can not be successfully cloned)

 git submodule init # Initialize submodule

 git submodule update # Update the submodule (the command must be executed in the root
directory)

 git submodule update --init --recursive # The downloaded project has submodule

 When a submodule is included in the project using git clone, initially, the content of the
submodule will not be downloaded automatically. At this time, just execute the following
command:

 git submodule foreach git pull # There are other submodules in submodule One update

 git submodule foreach git pull origin master # submodule update

 git submodule foreach --recursive git submodule init

 git submodule foreach --recursive git submodule update

 Delete Files

 git rm -rf node_modules/

 remote

 Git is a distributed code management tool, so it can support multiple warehouses. In git, the
warehouse on the server is called remote locally. When personal development, multi-source may
not be used much, but multi-source is actually very useful.

 git remote add origin1 git@github.com:yanhaijing/data.js.git

 git remote # show all sources

 git remote -v # show all sources + details

 git remote rename origin1 origin2 # rename

 git remote rm origin # delete

 git remote show origin # View all information about the specified origin

 tags

 When development reaches a certain stage, tagging a program is a great feature.

 git tag -a v0.1 -m 'my version 1.4' # New annotated tag

 git push origin --tags # push all branches at once

mailto:git@github.com

 git push origin v1.5 # Push a single tag to the orgin source

 git tag -v v1.4.2.1 # Verify tags, verify signed tags

 git show v1.5 # see the corresponding GPG checkmark

 git tag # list existing tags

 git tag v0gi.1 # New tag

 git checkout tagname # switch to tag

 git tag -d v0.1 # delete tags

 git push origin :refs/tags/v0.1 # delete remote tags

 git pull --all # Get all remote content including tags

 git --git-dir='/.git' describe --tags HEAD # View local version information

 log log

 git config format.pretty oneline #When displaying history, only one line is displayed for each
commit

 git config color.ui true #colored git output

 git log #View recent commit log

 git log --pretty=oneline #Single line display commit log

 git log --graph --pretty=oneline --abbrev-commit

 git log -num #Display the first log (reciprocal)

 git reflog #View all operation records of all branches

 git log --since=1.day #Commits within one day; you can give various time formats, such as a
specific day ("2008-01-15"), or how long ago ("2 years 1 day" 3 minutes ago”).

 git log --pretty="%h - %s" --author=your name #View your own log

 git log -p -2 #Expand two updates to show the content difference of each commit

 git log --stat #To quickly see what changes have been made to updates submitted by other
collaborators

 git log --pretty=format:"%h - %an, %ar : %s"#Customize the record format to be displayed

 git log --pretty=format:'%h : %s' --date-order --graph # Topological order display

 git log --pretty=format:'%h : %s - %ad' --date=short #date YYYY-MM-DD display

 git log HEAD --pretty=format:%s # Only show commits

 git config --global format.pretty '%h : %s - %ad' --date=short #date YYYY-MM-DD display Write
global configuration

 Option Description Option Description

 %H The full hash string of the commit object (commit) %ad Author revision date (can be
customized with the -date= option)

 %h Short hash string of commit object %ar Author revision date, as how long ago

 %T The full hash string of the tree object (tree) %cn The name of the committer

 %t Short hash string of tree object %ce Submitter's email address

 %P full hash string of parent %cd commit date

 %p Short hash string of parent object %cr Commit date, as how long ago

 %an author's name %s commit description

 %ae Author's email address - -

 Pretty Formats

 rewrite history

 git commit --amend # change the last commit

 git rebase -i HEAD~3 # 修改最近三次的提交说明，或者其中任意⼀次

 git commit --amend # 保存好了，这些指⽰很明确地告诉了你该⼲什么

 git rebase --continue # 修改提交说明，退出编辑器。

 pick f7f3f6d changed my name a bit

 pick 310154e updated README formatting and added blame

 pick a5f4a0d added cat-file

 change to

 pick 310154e updated README formatting and added blame

 pick f7f3f6d changed my name a bit

 删除仓库

 cd ..

 rm -rf repo.git

 Github官⽅教程

 other

 git help * # 获取命令的帮助信息

 git status # 获取当前的状态，⾮常有⽤，因为git会提⽰接下来的能做的操作

 报错问题解决

 \1. git fatal: protocol error: bad line length character: No s

 解决办法：更换remote地址为 http/https 的

 \2. The requested URL returned error: 403 Forbidden while accessing

 解决github push错误的办法：

 #vim 编辑器打开 当前项⽬中的config⽂件

 vim .git/config

 #修改

 [remote "origin"]

 url = https://github.com/jaywcjlove/example.git

 #为下⾯代码

 [remote "origin"]

 url = https://jaywcjlove@github.com/jaywcjlove/example.git

 \3. git status 显⽰中⽂问题

 在查看状态的时候 git status 如果是中⽂就显⽰下⾯的情况

 \344\272\247\345\223\201\351\234\200\346\261\202

 解决这个问题⽅法是：

 git config --global core.quotepath false

 References

 Git官⽹

 Github 15分钟学习Git

 Git参考⼿册

 Git简明⼿册

 Git Magic

 Git Community Book 中⽂版

 Pro Git

 图解Git

 git-简明指南

 learnGitBranching 在线学习⼯具

 初级教程

 廖雪峰的Git教程

https://github.com/jaywcjlove/example.git
https://jaywcjlove@github.com/jaywcjlove/example.git

 蒋鑫⽼师将带你⼊github的⼤⻔

 git详解

 oschina教程

 How to undo (almost) anything with Git撤销⼀切，汇总各种回滚撤销的场景，加强学习。

 Git 教程 | 菜⻦教程runoob.com

 Git 本地仓库和裸仓库

 沉浸式学 Git

 Git进阶⽤法，主要是rebase⾼级⽤法

All about sudo & su
In 1980, a quantum leap in fine-grained escalation control was conceived by some gentlemen—
namely Robert Coggeshall and Cliff Spencer—working at the Department of Computer Science at
SUNY/Buffalo. It ran on a VAX-11/750 running 4.1BSD, and they named their software sudo, short
for “superuser do”. Originally its only function was to allow temporary privilege escalation to the
superuser (or root) account, except using the user’s own password instead of sharing the root
account.

sudo stands for "superuser do" or "switch user, do."

It allows you to execute a command as the superuser
The superuser has full control over the system's hardware and software settings, with
no restrictions.

su stands for "substitute user."

It allows you to either change the user ID or become the superuser

Running su without a preceding sudo will subsequently prompt you for a password
that corresponds to the username you passed to su .

When you are finished using the account, enter logout or exit or press Ctrl + D
to return to the account in which you started (Figure 1).

Should you become confused about which account you are in, you can type the whoami
command to orient yourself.

If you do not specify a username after the su command, the system logs you into the
root account.

Entering su root will only change the account, and not the environment. The same
problem also exists with other accounts, and you can solve it by entering: su - [USER
NAME] . The -l or --login options have the same function.

su -c allows you to pass a command to the shell and run it as root, such as when you
enter commands like su -c "less /var/log/messages" . The system responds by
displaying the file in the less viewer. When you press the q key to quit the viewer,
you return immediately to the original account, having spent the minimal time possible
as root. Quotation marks mean the command should be read as a continuous option of
the su -c command. Without the quotation marks, su recognizes that less is a
command but, expecting its usual syntax, wrongly interprets the file path as a
username.

af://n1952
af://n1979

Figure 3: su needs quotation marks to read a
literal command.

Figure 1: Using su to switch accounts is much
quicker than logging in and out.

Note: When you use the basic su command, you change accounts but do not completely
change your environment. To be specific, only the $HOME , $SHELL , $USER , $LOGNAME , $PATH ,
and $IFS environment variables are reset. Depending on how su was compiled, $TERM ,
$COLORTERM , $DISPLAY , and $XAUTHORITY may also be reset.

The options -m , -p , or --preserve-environment will keep your original environment. You can also
specify the shell to use when you switch accounts with -s or --shell [SHELL] (e.g., if you want to
see whether a script written for Bash will run in an alternative shell such as Zsh).

All this tinkering with environments can be confusing, which is why many users stay with su - .
However, this is the least safe alternative: you are better off running the env command if you
become confused. The long output that env provides contains entries, such as the home
directory, that will show just what environment you are using.

Many users enter su - , change to root, and then enter a command. This habit is methodical, but
it also increases the amount of time your system is vulnerable.

The Sudo Command
Functionally, sudo is the equivalent of su -c , designed to run a single command as root and then
return to the original account. However, whereas su requires the root password, sudo can be
configured several ways, depending on how a particular distribution decides it is most secure.

bb@nanday:~$ su -c less /var/log/messages
No passwd entry for user '/var/log/messages'

bb@nanday:~$ su -
Password:
root@nanday:~# exit
logout
bb@nanday:~$

HOME=/home/cory
SHELL=/bin/bash
USER=cory
LOGNAME=cory
PATH=/home/cory/.local/bin:/home/cory/bin:/usr/local/sbin:/usr/local/bin:/usr/sbi
n:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
TERM=xterm-256color
COLORTERM=truecolor
DISPLAY=:0
XAUTHORITY=/home/cory/.Xauthority

af://n1979
af://n1982
af://n1989

Some Linux distributions, such as Ubuntu, let users enter their own passwords to use sudo . This
practice lets a user perform privileged operations without the root password. On the other hand,
you control which tasks the user can perform, and letting users authenticate with their own
password minimizes the number of users who need access to the root password. Other
distributions, such as openSUSE, requires users to enter the root password with sudo .

Most users know sudo as the equivalent of the children's magic word "please." That is, to run a
command with root privileges, you add sudo to the start. For example, to run the shutdown
command to stop the system, you would type sudo shutdown and enter the appropriate
password (typically your password or the root password, depending on your sudo configuration).

Your expanded privileges can be set to last for a time after you enter the first command - typically,
five minutes. Until they expire, you can enter additional commands prefaced by sudo without
entering a password again. You can extend this time by another 15 minutes using the -v option.
Conversely, if you do not need the additional time, run sudo -K to remove your privileges. Less
drastically, sudo -k [COMMAND] removes your current privilege for a specific command you are
authorized to run with sudo . To restore the privileges, you need to run sudo again.

As with su - , sudo offers some control over the environment in which it runs. Using the -U
option with sudo , you can run a command as a user other than root. You can also use -E to run
commands in your current environment or -H to run them from your current home directory.

If you have trouble running sudo , start by running sudo -l (Figure 4). This command shows the
paths to commands that you can run from the current account, as well as the set of commands
themselves. In Ubuntu-derived distros, You are probably authorized to run all commands as root,
but on a custom configuration, your choices may be more limited. Note that if you do not see a
list, but are only offered three attempts to log in, then sudo is not configured on your system.

Figure 4: Query /etc/sudoers to learn what
commands you can run.

 You might think to run sudo itself with the full path, /usr/bin/sudo /bin/bash , to avoid the
possibility of using a fake sudo .

sudoers
The /etc/sudoers file contains information on which users can use sudo and for what
purposes. The sudoers file is a plaintext file, but you should never open it directly from a text
editor. Instead, run either the command sudo -e sudoedit or the command visudo
/etc/sudoers . Both commands lock the original file and open a temporary copy of sudoers in the
default text editor. If you prefer, you can replace the default editor by running EDITOR=[EDITOR]
/usr/sbin/visudo .

bb@bb ~ $ sudo -l
Matching Defaults entries for bb on this host:
 env_reset, mail_badpass,
 secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin

User bb may run the following commands on this host:
 (ALL : ALL) ALL
 (root)_NOPASSWD: /usr/lib/linuxmint/mintUpdate/checkAPT.py

af://n1996
af://n1999

When you are finished, visudo checks for errors, giving you the chance to correct them or go
ahead and save to the original file. Be careful before you save - syntactical errors can prevent
sudo from working properly, or even at all.

The top of the sudoers file sets aliases for advanced configuration. Aliases can be used for such
purposes as creating comma-separated lists of users or commands to simplify configuration. For
example, if you want to restrict who can power off the system or network, add the following line
to create the command alias SHUTDOWN :

Once the alias is defined, you can give users the right to run all four commands simply by
referencing the SHUTDOWN alias. In the same way, you could define a group of users called
ADMINS, all of whom can run the same commands.

Regardless of whether you specify aliases, you can assign privileges with single-line entries.
Depending on the distribution, the assignment of various privileges may be organized by
commented lines prefaced with the hash (#) symbol. Be sure that the lines that assign privilege
are below the list of uncommented aliases.

The simplest form of privilege assignments is [NAME] ALL = ALL . For example, bb ALL = ALL
allows user bb to run any command from any terminal.

More restrictively, the line could be read as follows:

 Or, if the SHUTDOWN alias suggested above was defined at the top of the sudoers file, the line
could be:

The sudoers file can also contain fields to adjust other behaviors. The most useful fields are
passwd_tries , which sets the number of attempts to log in to sudo ; passwd_timeout , which
sets the length of time that a login lasts; and editor , which sets the editors you can use with
sudo . For a complete list of these fields, see the sudoers man page.

Avoiding Self-Sabotage
Like much of Linux, su and sudo can be as simple or as complex as you choose. Most popular
uses of sudo , in particular, are extremely basic, and by copying them, you can quickly get up to
speed. However, when you use su and sudo , be careful that you do not undermine their
purpose. The entire point of both commands is to increase security by minimizing the time you
run as root. Both commands can reduce your time as root to the bare minimum, but that doesn't
mean you can relax other precautions.

Specifically, avoid using su to become root and then keeping a terminal open and forgotten on
some overlooked virtual workspace. Similarly, reduce the time that a successful sudo login lasts
to the minimum. Consult system logs to ensure that the powerful su and sudo commands are
only used for authorized activities.

The Administrator Sees Everything

Cmnd_Alias SHUTDOWN = /sbin/halt, /sbin/shutdown, /sbin/reboot, /sbin/poweroff

bb /sbin/halt/, /sbin/shutdown, /sbin/reboot, /sbin/poweroff=ALL

bb SHUTDOWN=ALL

af://n2012
af://n2015

The system will log unsuccessful calls to su and sudo . If you type su and enter the wrong
password, an entry like the following will appear in the logfile (messages , syslog , or auth.log
below the /var/log/directory):

Unsuccessful calls to sudo are also logged. Typically, you will see entries in the
/var/log/messages file, although Fedora Linux writes the entries to /var/log/secure and only
logs the errors in messages :

The sudo command differs from su in that the logfile also reveals which program a user ran with
root privileges, but that's not all. If you attempt to run a program without the necessary privileges,
don't be surprised if the administrator knows exactly what you have been up to and sends you a
friendly reminder about unsuccessful "break-in attempts." Users also learn that they are not
allowed to run sudo thanks to a console message:

 In plain English, this message means that the root user will receive a message by email that
shows exactly when "peggy" failed to run sudo . The message is tagged as "SECURITY information
for huhnix." If you want to find out which commands you are allowed to run under sudo , you can
type sudo -l for a list of commands allowed through the sudo configuration.

Nov 23 08:14:08 server su: FAILED SU (to root) esser on /dev/pts/3

Sep 11 21:10:47 huhnix sudo: huhn : TTY=pts/6 ; PWD=/home/huhn ; USER=root ;
COMMAND=/usr/bin/less
 /var/log/messages

$ sudo less /var/log/messages
Password:
peggy is not in the sudoers file.
This incident will be reported.

sudo
command

Explanation

sudo -i Begin a shell session as the system's 'root' user.

sudo -B Execute instructions in the background.

sudo -h Show help (from man page).

sudo -K
When given 'sudo' privileges for a certain duration of time, sudo -K removes
those cached credentials entirely, so that the next time you run a command
with 'sudo' privileges, you will have to enter a password.

sudo -k

[COMMAND]

Removes your current privilege for a specific command you are authorized to
run with sudo .

sudo -V
Print the sudo version string as well as the version string of the security
policy plugin and any I/O plugins.

sudo -v

Update the user's cached credentials, authenticating the user if necessary.
For the sudoers plugin, this extends the sudo timeout for another 15 minutes
by default, but does not run a command. Not all security policies support
cached credentials.

sudo -l

or sudo -
ll

List user's privileges or check a specific command; use twice for longer
format.

sudo -s

[SHELL]
Execute the specified shell.

Assigning Access Permissions to Users
and Groups

Users and groups are concepts central to multiuser operating systems. Assigning a name to a
user account allows users to log in separately, set up their own environments, and control access
to their private files by assigning permissions.

Strategies for applying users and groups have changed through the years, but essentially, a group
is a collection of users typically assigned access to a collection of resources associated with a
specific function or profile. For instance, the financial group might be assigned access to a
common directory with financial documents or access to a printer located in the financial office.

On home systems with only a few users, groups sometimes matter so little that users mostly
ignore them. In fact, you can sometimes hear suggestions that groups are obsolete and should be
eliminated. However, on networks, groups are a means of exercising the security principle of
least privilege: restricting access to data and functions only to those who require them.
Modern Linux systems have GUI-based utilities for managing users and groups, but many
experienced users still prefer the swift and decisive Bash commands.

Files for Users and Groups

af://n2055
af://n2059

Users are defined on one line in /etc/passwd and a corresponding line in /etc/shadow ;
memberships in groups are defined in /etc/group . Each user is assigned a unique identifier,
called the user ID (UID), and each group is assigned a group identifier, referred to as the GID.
Valid UIDs and GIDs are integers from zero to 2^32 - 1, although the maximum
recommended is 65535.

UIDs between 0 and 999 are generally reserved for system accounts. The root account
typically has a UID of 0 and belongs to a group also known as root, which is assigned a GID
of 0. By default, most Linux distributions number user accounts from 1000, which is
assigned to the user account during installation.

The /etc/passwd file is readable by every user of the machine. Because allowing users to view
even encrypted passwords is a security hazard, passwords were long ago removed from
/etc/passwd to /etc/shadow , which only the superuser can view. In fact, with the introduction
of systemd, /etc/passwd has become even more limited. Each account continues to be defined
in six colon-separated fields (Figure 1), starting on the left with the username. The second field is
now always marked with an x, which originally indicated that the account could be used to log in,
but now it seems to indicate that the field is governed by systemd.

The third and fourth fields are still the UID and the GID of the group to which the user belongs,
but the fifth field, which once stored additional information about a user, such as a full name and
phone number, now either points to a subdirectory of /run/systemd or of /var , which provides
resources for systemd. The sixth field, can still list the user's shell, but /sbin/nologin is more
likely to be entered than in the pre-systemd days.

Figure 1: The /etc/password file under systemd.

The /etc/shadow file has preserved its original functionality (Figure 2). The first field in each line
is the username, and the second is the encrypted password - or a placeholder if the user cannot
log in. The third through fifth fields are used for controlling passwords - showing the age of the
password, the minimum age before the password can be changed, and the maximum time before
a password must be changed. The sixth field is supposed to define the number of days before a
password expires that the user will receive a warning, the seventh field defines the number of
days after expiry that the account will be disabled, and the eighth field is left blank for future
purposes.

Figure 2: /etc/shadow contains encrypted
passwords where they exist, but many of its fields
are no longer used by many users.

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync

daemon:*:15434:0:99999:7:::
bin:*:15434:0:99999:7:::
sys:*:15434:0:99999:7:::
sync:*:15434:0:99999:7:::
games:*:15434:0:99999:7:::

af://n2064
af://n2067

The use of /etc/group has also changed over the years. Each group is defined in a single line of
four fields (Figure 3). The first is the group's name, which is usually self-explanatory. The name is
followed by a field for a group password, which these days is almost always marked by an x,
because the custom is to rely on user passwords. The third field is the GID, and the fourth is a
comma-separated list of users.

When you install most distributions, the ordinary user account created at installation is added
automatically to the groups that an average desktop user might need, such as cdrom or sudo.
When you add a user account, the user is typically added to the same groups assigned to the user
account created at installation. You can also add a user to a group directly by opening
/etc/group in a text editor as root.

Figure 3: /etc/group remains useful, but it is also a
repository of obsolete groups.

Adding, Locking, and Removing
The command for adding users is run from the root account:

The adduser command calls the useradd utility. You can also call useradd directly from the
command line on most Linux systems, but adduser is a bit more user friendly.

By default, the user and a group with the same name are created. You are asked to type the
password for the new account, and a home directory is created with the same name as the
account under /home (Figure 4). However, you can use options to modify all these defaults,
adding or changing the default groups or the location of the home directory. You can also set the
number of days before the account expires or set the account to use a shell other than Bash. To
save time, you can also edit /etc/default/useradd to set the default information created for
new accounts.

Figure 4: The adduser command sets up a basic
account.

root:x:0:
daemon:x:1:
bin:x:2:
sys:x:3:
adm:x:4:logcheck

adduser OPTIONS USER

root@nanday:/etc/default# adduser jack
Adding user `jack' ...
Adding new group `jack' (1002) ...
Adding new user `jack' (1004) with group `jack' ...
Creating home directory `/home/jack' ...
Copying files from `/etc/skel' ...
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for jack

af://n2072
af://n2074
af://n2079

 After you enter the password, you can add user information such as the Full Name, Room
Number, Work Phone, and Home Phone, but many users simply press the Enter key to bypass
these fields. Later, you can change the password with passwd USER , authenticating with the
current password before changing it.

If you want to disable a user account rather than delete it, the easiest solution is the command

This command sets an expiry date in the past, automatically making the account unavailable. It is
preferable to passwd -l , because it not only prevents a normal login, but also a login by ssh.
When you want to restore the account, use passwd -u USER .

When you decide to delete an account, first transfer any information you want to save from the
home directory. To delete a user account, log in as root and type:

If you no longer need the home directory, add the -r option. However, you can also use the -f
option to delete the account, even if the user is logged in. Note that the command gives no output
of its progress; the only sign that the account has been deleted is when you return to the
command line.

Similar commands, groupadd and groupdel , are available for editing groups, Generally the only
groups you will want to edit are those created for users. For predefined groups that give access to
hardware or functionality, it is usually better to just take all the users out of an unused group
rather than deleting the group itself.

If you do delete a group, be aware that deleting the group does not change permissions on any
files. Before deleting a group, locate any files that the group owns with the command

and change the group permissions.

Managing Users and Groups
Before editing a user or group, make sure that no one who is logged in will be affected by typing
the w or who command. If you want more detailed information, use finger , adding a user after
the command for specific information.

As you edit an account,

Enter the new value, or press ENTER for the default
 Full Name []:
 Room Number []:
 Work Phone []:
 Home Phone []:
 Other []:
Is the information correct? [Y/n]

passwd --expire 1 USER

userdel USER

find / -gid GID

usermod OPTIONS USER

af://n2092

should take care of most circumstances. For example, you can change the name of an account
with the option -I NEWNAME , the home with -d DIRECTORY , the expiry date with -e DATE , or the
number of days after the expiry date that the account is disabled with -f NUMBER ; better yet,
combine the two options.

The groupmod command performs most of the functions of usermod , but for groups (e.g., change
the group name with -n or the GID with -g). If you are using a chroot jail (an isolated directory
structure), you can also use -R to create a new /etc/group using the configuration of the jail.
However, many users will find usermod more handy than groupmod .

Permissions
The whole purpose of users and groups is to have a way to assign permissions. Granular access
privileges for files and directories make Linux a safe operating system.

The root user is subject to no restrictions, and this includes assigning read, write, and execute
permissions to other users throughout the system. If you are the owner of a file or directory, you
can grant access to these resources to other accounts. If you are also a member of a specific
group, you can modify the group ownership of files and folders for more granular permission
assignments to files.

For every file, (and thus for directories, device files, etc.), Linux defines who may read, write, and
execute that file. Also, every file belongs to an owner and to a group. The following three
permissions are assigned separately for owners, groups, and other users:

Read permission (r flag): Users can display the contents of a file or folder on screen, copy
the file, and do a few other things. Directories should additionally have the x flag (see
below) to allow users to change to that folder; otherwise, only a list of files can be displayed.
Write permission (w flag): Users can change files and directories and store their changes.
Write permission also includes the ability to delete.
Execute permission (x flag): For programs, this means that the user is permitted to run the
program. Execute permission for a directory means that the user is permitted to change to
the directory (the user additionally needs read permission to be able to view the folder
content).

To discover the permissions for a file at the command line, you can simply set the -l flag with the
ls command (Figure 5). Permissions are indicated by the letters r (for read), w (for write), and
x (for execute). In the ls output, note the three sets of r , w , x (or -) at the beginning of the
file name entry. The first block shows the permissions for the owner, the second block refers to
the group, and the third block refers to all users.

Folders are indicated by a d (for "directory") at the start of the list.
Regular files are indicated by a single dash (-).
Symlinks are indicated by an l (for link).
Block devices like /dev/sda1 are indicated by a b (for block).
Character devices (e.g., /dev/tty1) are indicated by a c .

Figure 5: Listing permissions at the command line.

af://n2098
af://n2121

Special Permissions
Linux has two special permissions:

the s bit (also known as the setuid/setgid bit)
the t bit (also known as the sticky bit)

Both replace the x in the rwx block of three. The s is commonly seen with executable files,
whereas the t bit is more common with directories.

The setuid/setgid (set user ID/set group ID) bit executes a program with the permissions of the
user or group, no matter who runs the program. In this way, nonprivileged users can access
resources they would not normally be able to access. Although this is a potential security risk, the
s bit has its uses. Many programs, including su , sudo , mount , or passwd rely on the s bit
(Listing 1).

Listing 1: Programs That Use the setuid/setgid Bit

The passwd program, for example, modifies passwords, accessing the /etc/shadow file in the
process of entering the new password. By default, the file is protected against write access by
nonprivileged users and reserved for use by the administrator to prevent just anybody having the
ability to manipulate the passwords. The s bit executes the passwd program as the root user
and enters the new password in /etc/shadow "on behalf" of root.

The other special permission, the t bit, commonly occurs in shared directories (read, write,
execute permissions for all) in place of the execute flag to ensure that users are only allowed to
modify - and thus delete - their own data. The sticky bit is typically set for /tmp (Figure 5). This
stores temporary files for multiple users.

If everybody had the right to read, write, and execute these files, in theory, everybody would be
able to clean up the system and delete arbitrary data. The t bit ensures that users can only
delete their own files (or those files for which they have write permission). The exception to this
rule is that the owner of the folder with the sticky bit is allowed to delete within that folder.

Modifying Permissions

magazine@MacBuntu:/$ ls -lr
total 96
lrwxrwxrwx 1 root root 30 2010-12-25 08:23 vmlinuz.old ->
boot/vmlinuz.old...
lrwxrwxrwx 1 root root 30 2011-01-27 16:14 vmlinuz.old -> boot/vmlinuz-...
drwxr-xr-x 15 root root 4096 2010-10-07 12:38 var
drwxr-xr-x 12 root root 4096 2010-04-15 12:35 usr
drwxrwxrwt 15 root root 4096 2011-02-04 11:09 tmp
drwxrwxr-x 12 root root 0 2011-02-04 11:08 sys
drwxr-xr-x 3 root root 4096 2010-09-09 17:08 srv

-rwsr-xr-x 1 root root 31124 Jul 31 15:55 /bin/su
-rwsr-xr-x 1 root root 123448 Jun 22 18:14 /usr/bin/sudo
-rwsr-xr-x 1 root root 72188 Oct 22 23:54 /bin/mount
-rwsr-xr-x 1 root root 41292 Jul 31 15:55 /usr/bin/passwd

af://n2124
af://n2133
af://n2138

Permissions and Priorities

Permissions for the user, group, and all others have different priorities. If you are the owner
of a file, permissions for the owner apply (the first block of three letters). If you're not the

owner but belong to the group, the second block applies. If you're neither the owner nor a
group member, the third set of permissions apply.

Octal Binary Letters

0 000 ---

1 001 --x

2 010 -w-

3 011 (= 2 + 1) -wx

4 100 r--

5 (= 4 + 1) 101 (= 4 + 1) r-x

6 (= 4 + 2) 110 (= 4 + 2) rw-

7 (= 4 + 2 + 1) 111 (= 4 + 2 + 1) rwx

The chmod program lets you modify file and directory permissions, assuming you are the owner
or the system administrator. chmod lets you set the permissions using either letters or numbers.

If you are using letters

u stands for user (owner)
g stands for group
o stands for others (all other users)

As I described previously

r stands for read
w stands for write
x stands for execute
s stands for the setuid/setgid bit
t stands for the sticky bit

A combination of these letters (without spaces!) with plus, minus, and equals signs tells chmod to
add, remove, or assign these permissions (Table 1). To give a group read and write permissions
for a file, just type chmod g+rw file . Removing permissions follows the same pattern: The chmod
o-rwx file command removes all permissions for all user who are neither the owner nor
members in the owner group. You could combine these two commands thus:

(See the "Permissions and Priorities" box for the hierarchy of permissions.)

Table 1: Permissions

An equals sign lets you assign precisely the permissions specified at the command line. For
example,

chmod g+rw,o-rwx file

af://n2168

gives the owner, group members, and all other users read, write, and execute permissions for the
directory. Instead of ugo , you could alternatively use a (for all) to assign user, group, and other
permissions.

The chmod program also understands numbers. Instead of specifying the permissions with
letters, you can pass in three- or four-digit octal numbers. The octal number is an ingenious
shorthand for referring to a binary number that spells out the rwx permission bits (see Table 1).
Calculate the numbers as follows:

4 stands for read permission
2 stands for write permission
1 stands for execute permission

The first number refers to the owner, the second number to the group, and the third to all others.

On this basis, you can see, for example, 644 would mean u=rw,go=r (resulting in rw-r--r--), or
777 would be a=rwx (resulting in rwxrwxrwx).

To set the s or t bit, you need to add a fourth number at the start of the block of three. The
number 4 represents the s bit for the owner (setuid), 2 sets the s bit for the group (setgid),
and 1 sets the t bit. Listing 2 gives an example.

Listing 2: Setting the s Bit by Number

Changing Group Memberships
To change group membership for files and directories, you can use the chgrp tool. As a "normal"
user, you are allowed to assign your own files to a specific group; however, this assumes that you
are a member of the group. The root user, as always, has no restrictions.

The following command tells you your own group memberships:

In this case, the user called petronella may change access to her own files for members of the
groups petronella , adm , dialout , fax , cdrom , and so on. The chgrp command first expects
information about the new group and then the name of the file or directory. To assign a file to the
audio group, just type:

chmod ugo=rwx directory

$ ls -l script.sh
-rw-r--r-- 1 heike heike 3191789 Oct 6 05:01 script.sh
$ chmod 4755 script.sh
$ ls -l script.sh
-rwsr-xr-x 1 heike heike 3191789 Oct 6 05:01 script.sh

$ groups
 petronella adm dialout fax cdrom tape audio dip video plugdev fuse lpadmin
netdev admin sambashare

chgrp audio FILE_NAME

af://n2220
af://n2223
af://n2229

Changing Owners and Groups
On a Linux system, the system administrator is allowed to assign new owners and new groups to
files and directories. To give a file to user petronella , simply use the chown command:

Also, you can define a new group in the same command. To do so, add the name of the group
after a colon:

The file now belongs to user petronella and group audio .

chown is mainly used by the root user, however, an ordinary user can use it for certain limited
tasks, such as changing the group membership for a file the user owns to a group to which the
user belongs.

Across the Board
All three tools - chmod , chgrp , and chown - support the -R option for recursive actions. If you
want members of the video group to access a directory and the files it contains, just type:

The -R option can also save you some typing in combination with the chmod command. To
remove read, write, and execute permissions from this folder for all users who are not the owner
or members of the video group, just type:

Be careful when you run recursive commands that remove the execute flag. If you mistakenly
type a-x instead of o-x , you will lock yourself out:

chmod will remove execute permissions from the parent directory and your ability to change the
directory and modify files (Listing 3). The use of the find command can help you avoid this kind
of dilemma (Listing 4). The find command first discovers the files (-type f) in the test
directory (and possible subfolders) and then runs chmod against them, ignoring the directory
itself.

Listing 3: Oops ... Locked Out!

Listing 4: Using the find Command

chown petronella FILE_NAME

chown petronella:audio FILE_NAME

chgrp -R video DIRECTORY

chmod -R o-rwx DIRECTORY

$ ls -l test
total 0
-rwxr-xr-x 1 petronella petronella 0 Nov 4 12:12 bar
-rwxr-xr-x 1 petronella petronella 0 Nov 4 12:12 foo
$ chmod -R a-x test
chmod: cannot access `test/bar': Permission denied
chmod: cannot access `test/foo': Permission denied

af://n2229
af://n2236
af://n2243
af://n2245

To use the -R parameter with the chown program, you would enter the following command to
hand over the home directory and all the files in it (including the hidden configuration files) to
user pooh :

From the Beginning
The umask program specifies the default permissions assigned to newly created files and
directories. Typing the umask command without setting any parameters reveals the current
setting:

The four-digit octal number that is returned specifies what to subtract from the default values
(0666 for files, 0777 for directories). In other words, new files are assigned 0644 (rw-r--r--), and
new folders are assigned 0755 (rwxr-xr-x) when they are created.

To change the umask, enter the file and specify the new value at the command line:

This entry means that new files and directories are only available to their owner. To make new
files writable for group members, you can choose umask 0002 instead.

The umask you assign in this way is valid for the current shell, but you can add an entry to your
Bash configuration file ~/.bashrc to make the change permanent. Don't forget to run source
~/.bashrc to reload the Bash configuration file.

To modify the umask for the system, you will need to add a global entry to the /etc/profile file,
and you will need to work as root to edit it.

Calendar command

$ find test -type f -exec chmod a-x \{\} +
$ ls -l test
total 0
-rw-r--r-- 1 petronella petronella 0 Nov 4 12:12 bar
-rw-r--r-- 1 petronella petronella 0 Nov 4 12:12 foo

chown -R pooh /home/pooh

$ umask
0022

umask 0077

 cal
 # ^^^ Displays calendar for current month
 cal -y
 # ^^^ Displays calendar for current year
 ncal
 # ^^^ Displays calendar for current month, with the rows and columns reversed
 ncal -h
 # ^^^ Turns date highlight off
 cal -m1
 # ^^^ Displays first month of the current year
 ncal -m1

af://n2249
af://n2258

History command

bash_history file is in your home directory

 # ^^^ Displays first month of the current year, with the rows and columns
reversed
 ncal -w
 # ^^^ Turns date highlight back on
 cal -3
 # ^^^ Displays previous month, the current month, and the next month
 ncal -3
 # ^^^ The same as the previous command, but with the rows and columns reversed
 cal -A2
 # ^^^ Displays the current month, the next month, and the month after next
month
 ncal -A2
 # ^^^ The same as the previous command, but with the rows and columns reversed
 cal -B2
 # ^^^ Displays the two months prior to the current month, as well as the
current month
 ncal -B2
 # ^^^ The same as the previous command, but with the rows and columns reversed
 cal -B4 -A3
 # ^^^ Displays current month, four months prior, and three months after the
current month
 cal 2021
 # ^^^ Displays the current calendar year
 cal -d 2016-3
 # ^^^ Displays a specific month from a specific calendar year
 paste <(cal 2020) <(cal 2021)
 # ^^^ Displays two specific calendar years side by side

history # show command history
history 20 # Display last 20 commands
history -c # clear command history
history | grep chpasswd # retrieves all instances of specified
 # string from command history
[Up arrow] # Previous command
Ctrl + R # Reverse search
!ls # Run last ls command
!! # Previous command
!45 # Run the command with the ID number 45
!-5 # Revert back to the fifth previous command relative
 # to current command ID
!1997:p # Prints command before executing
^string1^string2^ # Replace string1 with string2 in previous command
fc 477 487 # (file compare) Displays specific range of commands
in default text editor

af://n2261

List command

Change directory command

ls
^^^ list
ls -l
^^^ long listing
ls -a
^^^ show hidden files
ls -h
^^^ human-readable
ls -r
^^^ reverse order
ls -t
^^^ sort files by date from newest to oldest
ls -S
^^^ sort by decreasing size
ls -i
^^^ show inodes
ls -1
^^^ show 1 item per line
ls -d
^^^ list directories themselves, not their contents
ls -X
^^^ sort alphabetically by entry extension

cd
^^^ change directory
cd .
^^^ The period represents the current working directory
cd OR cd ~
^^^ Navigate to the home directory of the current user (don't use the vertical
pipes here)
cd /
^^^ Navigate to the root directory
cd -
^^^ Navigate to the previously chosen directory
cd ..
^^^ Go back one directory
cd ../..
^^^ Go back two directories
cd ../../drop/into/directory
^^^ Go back two directories and drop into desired directory
cd /path/to/directory
^^^ Navigate to desired directory using absolute path
cd path/to/directory
^^^ Navigate to desired directory using relative path

af://n2264
af://n2266

Print working directory

Make directory command

Copy command

Finding files

The find command lets you search for files by name or part of the name. By default, find searches
recursively, meaning it looks for files through the entire directory tree.

pwd
^^^ print working directory

mkdir
^^^ make directory
mkdir -p foo/bar/baz
^^^ Create nested directories, including "parents" and "children"
mkdir -p foo/{bar,baz}
^^^ Create parent directory with two subdirectories
mkdir -p foo/{bar,baz/{zip,zap}}
^^^ Create grandparent directory, two child directories, and two grandchild
directories

cp ~/Desktop/foo.txt ~/Downloads/foo.txt
^^^ copy a file
cp -r ~/Desktop/cruise_pics/ ~/Pictures
^^^ copy a directory
cp -i ~/Desktop/foo.txt ~/Documents/foo.txt
^^^ To create a copy but ask to overwrite if the destination file already
exists
cp foo.txt{,."$(date +%Y%m%d-%H%M%S)"}
^^^ To create a backup file with date
cp path/to/source_file.ext path/to/target_file.ext
^^^ Copy a file to another location
cp path/to/source_file.ext path/to/target_parent_directory
^^^ Copy a file into another directory, keeping the filename
cp -R path/to/source_directory path/to/target_directory
^^^ Recursively copy a directory's contents to another location (if the
destination exists, the directory is copied inside it)
cp -vR path/to/source_directory path/to/target_directory
^^^ Copy a directory recursively, in verbose mode (shows files as they are
copied)
cp -i *.txt path/to/target_directory
^^^ Copy text files to another location, in interactive mode (prompts user
before overwriting)
cp -L link path/to/target_directory
^^^ Dereference symbolic links before copying

find /home/foo -name "Lin*"
^^^ Search for files whose names start with Lin in the foo directory and its
subdirectories
Remember that the find command is case sensitive
find home/user -iname "Lin*"

af://n2268
af://n2270
af://n2272
af://n2274

The locate command searches the database of filenames, which is updated daily.

The whereis command returns paths to binary, source, and man pages for an executable.

^^^ The -iname switch tells the find command to ignore case
find /usr /home /tmp -name "*.bin"
^^^ Search through the /usr, /home, and /tmp directories to look for all bin
files
find /usr /home /tmp -name "*.bin" 2> /dev/null
^^^ Avoid cluttered output by sending all error messages to the null
pseudodevice file
find /photos -iname "*.NEF" -and -size +7M
^^^ Search for .NEF files that are larger than 7MB
find /downloads -size +7M ! -iname ".NEF"
^^^ Search for files that are larger than 7MB but are not .NEF files
find /downloads -size +7M -or -iname "*.NEF"
^^^ Search for files that match either of the specified criteria
find . -user root
^^^ Search for files by owner (user)
find . -group www
^^^ Search for files by owner (group)
-type options: f(regular file), d (directory), l (symbolic links), and a few
others
find berlin/ -type d
^^^ Search for the directory of photos from Berlin

time options: -mmin (last time modified in minutes), -amin (last time accessed
in minutes), -cmin (last time changed in minutes), -mtime (last time modified in
hours, -atime (last time accessed in hours), -ctime (last time changed in hours)

find /photos -mmin -10 -name "*.NEF"
^^^ Search for photos that were modified 10 minutes ago
find /home/user -name "Lin*" -fprint search_results.txt
^^^ Print the search results to a file

locate backup.sh
^^^ locate file
locate -i backup.sh
^^^ locate file, while ignoring case
locate "*.jpg"
^^^ locate files by extension
locate "*.jpg" -n 5
^^^ locate a specific number of results
updatedb
^^^ manually update the file name database

whereis rawstudio # returns binary, source, and man page info for the Rawstudio
application
 # To search only binaries, use -b option
 # To search only man pages, use -m option
 # To search only source files, use -s option

Archive Type File extensions supported

a normal tar archive .tar

a gzipped tar archive .tgz, tar.gz, taz, tpz

a bzip2 tar archive tar.bzip2, .tb2, .tbz, .tbz2, .tz2

an lzip tar archive .tar.lz

an lzma tar archive .tar.lzma, .tlz

an lzop tar archive .tar.lzo

The which command

The which command tells you which version of a command will run. For example,
the which soffice command returns the /usr/bin/soffice path. If you want to find all the locations of
the command, you can use the -a option:

remove file(s)

File compression
Packages to Install
$ sudo apt install tar gzip bzip2 xz-utils zip unzip rar unrar p7zip-full p7zip-rar

Supported file extensions

which -a soffice

rm testfile.txt
^^^ Remove a file by passing the name of the file or path of the file to the rm
command
rm filename1 filename2 filename3
^^^ Removes multiple files from the current directory
rm -i filename(s)
^^^ Confirms the removal of each file before deleting it
rm -I filename(s)
^^^ Prompts once before removing more than three files, or when removing
recursively
rm -f filename(s)
^^^ Remove files without prompting (force), even if the files are write-
protected
rm -v filename(s)
^^^ Explains what is going on (verbose mode)
rm -d dirname(s) || rmdir dirname(s)
^^^ Remove empty directories
rm -r dirname(s)
^^^ Remove non-empty directories recursively, and prompts for files that are
write-protected

af://n2281
af://n2284
af://n2286
af://n2287
af://n2289

Short Option Long Option Algorithm

z --gzip gzip

j --bzip2 bzip2

J --xz xz

z --compress LZA (compress)

 --lzip lzip

 --lzma lzma

 --zstd zstd

Short Option Algorithm

-Iplzip
Parallel
lzip

-Ipigz
Parallel
gzip

-Ipxz
Parallel XZ
(LZMA)

The above arguments will only work if you actually have plzip and pigz
installed. Also note that you will have to have c or x before and -f after -I
when you use -I . Example: tar c -I"pigz -9" -f archive.tar.gz folder/

These are not your only options, there's more. tar accepts -I to invoke any third party
compression utility.

Algorithm Time Size Command Parameters Comment

none 0m0.934s 939M tar cf

tar itself is an
archiving tool, you
do not need to
compress the
archives.

gzip 0m23.502s 177M gzip cfz

gzip 0m3.132s 177M pigz c -Ipigz -f
Parallel gzip using
pigz 2.4.

bzip2 1m0.798s 134M bzip2 cfj

Standard bzip2 will
only use one core
(at 100%)

bzip2 0m9.091s 135M pbzip2
c -Ipbzip2

-f

Parallel bzip2.
pbzip2 process
used about 900
MiB RAM at
maximum.

lz4 0m3.914s 287M lz4
c -I"lz4" -

f

Really fast but the
resulting archive is
barely
compressed. Worst
compression king.

lz4 0m56.506s 207M lz4 -12
c -I"lz4

-12" -f

Supports levels -
[1-12] . Uses 1
core, and there
does not appear to
be any multi-
threaded variant.

lzip 4m42.017s 116M lzip c --lzip -f

v1.21. Standard
lzip will only use
one core (at 100%).
Very slow.

lzip 0m42.542 118M plzip
c -Iplzip -

f

plzip 1.8 (Parallel
lzip), default level
(-6).

lzip 1m39.697s 110M plzip -9
c -I"plzip

-9" -f

Parallel lzip at best
compression (-9).
plzip process used
5.1 GiB RAM at
maximum.

xz 5m2.952s 114M xz cfJ

Standard xz will
only use one core
(at 100%).
Unbearably slow.

https://linuxreviews.org/Lzip

Algorithm Time Size Command Parameters Comment

xz 0m53.569s 115M pxz c -Ipxz -f

Parallel PXZ
4.999.9beta.
Process used 1.4
GiB RAM at
maximum.

xz 1m33.441s 110M pxz -9
c -I"pxz

-9" -f

Parallel PXZ
4.999.9beta using
its best possible
compression. pxz
process used 3.5
GiB at maximum.

zstd 0m3.034s 167M zstd c --zstd -f
zstd uses 1 core by
default.

zstd 1m18.238s 117M
zstd -19 -

T0

c -I"zstd

-19 -T0" -f

-19 gives the best
possible
compression and -
T0 utilizes all
cores. If a non-
zero number is
specified, zstd
uses that many
cores.

A few minor points should be apparent from above numbers:

All the standard binaries GNU/Linux distributions give you as a default for all the commonly used
compression algorithms are extremely slow compared to the parallel implementations that are
available but not defaults.

This is true for bzip, there is a huge difference between 10 seconds and one minute. And it is
specially true for lzip and xz, the difference between one minute and five is significant.

The difference between the pigz parallel implementation of gzip and regular gzip may appear
to be small since both are very fast. The difference between 3 and 23 seconds is huge in terms of
percentage.

lzip and xz offer the best compression. They are also the slowest alternatives. This is especially
true if you do not use the parallel implementations.

Both plzip (5.1 GiB) and pxz (3.5 GiB at -9) use a lot of memory. Expect much worse performance
on memory-constrained machines.

The difference between bzip2 and pbzip2 is huge. It may not appear that way since bzip is so
much faster than xz and lzip but pbzip actually about ten times faster than regular bzip.

pbzip2's default compression is apparently it's best at -9. A close-up inspection of the output files
reveal that they are identical (130260727b) with and without -9.

zstd, appears to be the clear winner, with leading compression speed, decompression speed, and
acceptable compression ratio.

https://linuxreviews.org/Lzip
https://linuxreviews.org/Lzip

Algorithm Time Command Parameters Comments

none 0m1.204s tar -xf
Raw tar with no
compression.

gzip2 0m4.232s gzip2 -xfz

gzip 0m2.729s pigz
-x -Ipigz -

f

gzip is a clear winner if
decompression speed is the
only consideration.

bzip2 0m20.181s bzip2 xfj

bzip2 0m19.533s pbzip2
-x -Ipbzip2

-f

The difference between
bzip2 and pbzip2 when
decompressing is barely
measurable

lzip 0m10.590s lzip -x --lzip -f

lz4 0m1.873s lz4 -x -Ilz4 -f

Fastest of them all but not
very impressive considering
the compression it offers is
almost nonexistant.

lzip 0m8.982s plzip
-x -Iplzip

-f

xz 0m7.419s xz -xfJ

xz offers the best
decompression speeds of all
the well-compressed
algorithms.

xz 0m7.462s pxz -x -Ipxz -f

zstd 0m3.095s zstd -x --zstd -f
When compressed with no
options (the default
compression level is 3).

zstd 0m2.556s zstd x --zstd -f
When compressed with tar
c -I"zstd -19 -T0"

(compression level 19)

Common Flag Usage
-v → verbose, meaning print out status
-f → file
-c → create
-x → extract
-k → Don't replace existing files when extracting
-u → Append files which are newer than the corresponding copy in the archive
-r → Append files to the end of an archive
-l → Print a message if not all links are dumped
-d → find the difference between the archive and file system

af://n2563

Flag Compression Method

-z uses gzip

-j uses bzip2

-n → assume the archive is seekable. This option takes effect only if the archive is open for
reading
-t → test/list content
-z → filter the archive through gzip
--lzip →filter the archive through lzip
--lzma →filter the archive through lzma
--lzop →filter the archive through lzop
-J → filter the archive through xz

.tar - archiving utility (Default: no compression) -
supports gzip and bzip2 compression

.gz - uses Lempel-Ziv coding (LZ77) for compression

.tar.gz - remember the flags given above as an
alternative

$ tar -cvf [file.tar] [files/directories] # create
$ tar -xvf [file.tar] # extract
$ tar -xvf [file.tar] -C [/path] # extract to a location
$ tar -xvf [file.tar] --overwrite # extract overwrite
$ tar -tvf [file.tar] # list content

$ gzip [files] # create .gz of each file (remove original files)
$ gzip -k [files] # create .gz of each file (keep original files)
$ gzip -r [directory] # create .gz of a directory files
$ gzip -d / gunzip [file.gz] # extract
$ gzip -dr / gunzip [directory] # extract a directory
$ gzip -dk [file.gz] # keep the original file in a directory
$ gzip -l [file.gz] # list content
$ gzip -df / gunzip -f [file.gz] # extract overwrite

$ tar -cvzf [file.tar.gz] [files] [directories] # create
$ tar -C [/path] -cvzf [file.tar.gz] [files_in_path] # create without including
the path
$ tar -xvzf [file.tar.gz] # extract
$ tar -xvzf [file.tar.gz] -C [/path] # extract to a location
$ tar -xvzf [file.tar.gz] --overwrite # extract overwrite
$ tar -tvzf [file.tar.gz] # list content

af://n2597
af://n2609
af://n2611
af://n2613

.bz2 - uses Burrows-Wheeler block sorting text
compression algorithm, and Huffman coding.
Compression is generally considerably better than
that achieved by bzip command (LZ77/LZ78-based
compressors)

.tar.bz2

.xz

.tar.xz

From Denny Zhang's Website

1.1 Decompress

$ bzip2 -z [files] # create .bz2 of each file (remove original files)
$ bzip2 -zk [files] # create gzip of each file (keep original files - no
directory support)
$ bzip2 -zd / bunzip2 [file.bzip2] # extract
$ bzip2 -df / bunzip2 -f [file.bzip2] # extract overwrite

tar -cvfj [archive.tar.bz2] [file1] [file2] [file3] # create an archive for
several files
tar -cvfj [archive.tar.bz2] [directory] # create an archive for a directory
tar -xvfj [archive_file.tar.bz2] [/path/to/file1] [/path/to/file2] # Extract
specific files from an archive
tar -xvfj [archive.tar.bz2] --wildcards '*.txt' # Extract files with extension
'*.txt' from an archive

$ xz -z [files] # create .xz of each file (remove original files)
$ xz -zk [files] # create .xz of each file (keep original files - no directory
support)
$ xz -zd /unxz [file.gz] # extract
$ xz -df /unxz [file.gaz] # extract overwrite

$ tar -cvJf [file.tar.gz] [files] [directories] # create
$ tar -xvJf [file.tar.gz] # extract
$ tar -xvJf [file.tar.gz] -C [/path] # extract to a location
$ tar -xvJf [file.tar.gz] --overwrite # extract overwrite
$ tar -tvJf [file.tar.gz] # list content

af://n2613
af://n2615
af://n2617
af://n2619
af://n2622
af://n2623

Name Summary

Unpack *.tar tar -xvf ./file.tar

Unpack *.tar.gz tar xvzf ./file.tar.gz

Unpack *.rar unrar e ./file.rar

Unpack *.zip unzip ./file.zip

Unpack *.gz gunzip ./file.gz; gzip -d file.gz

Unpack *.bz2 tar -jxvf file.tar.bz2 -C /tmp/extract_here/

Unpack *.7z 7z e ./file.7z install p7zip first

Unpack *.xz tar -xf ./file.tar.xz

Unpack *.jar jar -xvf ./file.jar

Unpack *.war jar -xvf ./file.war

Unpack *.tgz tar -xf ./file.tgz

Name Command

Pack to *.tar tar -cvf ./file.tar <dir_to_compress>

Pack to *.gz tar -zcvf ./newfile.tar.gz <dir_to_compress>

Pack to *.tgz tar -cvzf backup.tgz *

Pack to *.bz2 tar -cvf ./file.tar.bz2 <dir_to_compress>

Pack to *.zip zip -r ./file.zip <dir_to_compress>

Name Command

Pack with exclude
tar --exclude "*.git*" -cvf file.tar

<dir_to_compress>

Remove a single file from tarball tar --delete -f file.tar file1.txt

Add file to tarball. -r indicates
append

tar -rf file.tar file1.txt

Create archive with password
protection

zip -er my.zip some_folder

1.2 Compress Common Format

1.3 Advanced Usage

Pandoc - markup converter
$ curl cheat.sh/pandoc

https://www.canr.msu.edu/news/encrypted-zip-mac
af://n2661
af://n2681
af://n2698

Convert documents between various formats.

More information: <https://pandoc.org>.

Convert file to pdf (the output format is determined by file extension):

pandoc input.md -o output.pdf

Force conversion to use a specific format:

pandoc input.docx --to gfm -o output.md

Convert to a standalone file with the appropriate headers/footers (for LaTeX,
HTML, etc.):

pandoc input.md -s -o output.tex

List all supported input formats:

pandoc --list-input-formats

List all supported output formats:

pandoc --list-output-formats

cory@amethyst:~$ pandoc --list-input-formats
commonmark
creole
csv
docbook
docx
dokuwiki
epub
fb2
gfm
haddock
html
ipynb
jats
jira
json
latex
man
markdown
markdown_github
markdown_mmd
markdown_phpextra
markdown_strict
mediawiki
muse
native
odt

opml
org
rst
t2t
textile
tikiwiki
twiki
vimwiki

cory@amethyst:~$ pandoc --list-output-formats
asciidoc
asciidoctor
beamer
commonmark
context
docbook
docbook4
docbook5
docx
dokuwiki
dzslides
epub
epub2
epub3
fb2
gfm
haddock
html
html4
html5
icml
ipynb
jats
jats_archiving
jats_articleauthoring
jats_publishing
jira
json
latex
man
markdown
markdown_github
markdown_mmd
markdown_phpextra
markdown_strict
mediawiki
ms
muse
native
odt
opendocument
opml
org
pdf
plain
pptx
revealjs

Scanning
Setup a Fujitsu ix500 scanner on Linux
Source: https://ridaayed.github.io/posts/setup_fujitsu_ix500_scanner_linux/

Install package

Approve the connection

Enable the scanner by opening the scanner’s lid

Get a list of devices:

Get a list of all device specific options:

rst
rtf
s5
slideous
slidy
tei
texinfo
textile
xwiki
zimwiki

sudo apt install sane-utils -y

sudo sane-find-scanner -q

found USB scanner (vendor=0x04c5 [Fujitsu], product=0x132b [ScanSnap iX500]) at
libusb:004:002
found USB scanner (vendor=0x0bda [Generic], product=0x0139 [USB2.0-CRW]) at
libusb:003:004

scanimage --list-devices

device `fujitsu:ScanSnap iX500:15419' is a FUJITSU ScanSnap iX500 scanner

scanimage --device 'fujitsu:ScanSnap iX500:15419' --all-options

Output format is not set, using pnm as a default.

All options specific to device `fujitsu:ScanSnap iX500:15419':
 Standard:
 --source ADF Front|ADF Back|ADF Duplex [ADF Front]
 Selects the scan source (such as a document-feeder).
 --mode Lineart|Gray|Color [Lineart]
 Selects the scan mode (e.g., lineart, monochrome, or color).
 --resolution 50..600dpi (in steps of 1) [600]

af://n2703
af://n2704
https://ridaayed.github.io/posts/setup_fujitsu_ix500_scanner_linux/
af://n2706
af://n2708
af://n2712
af://n2715

 Sets the resolution of the scanned image.
 Geometry:
 --page-width 0..221.121mm (in steps of 0.0211639) [215.872]
 Specifies the width of the media. Required for automatic centering of
 sheet-fed scans.
 --page-height 0..876.695mm (in steps of 0.0211639) [279.364]
 Specifies the height of the media.
 -l 0..215.872mm (in steps of 0.0211639) [0]
 Top-left x position of scan area.
 -t 0..279.364mm (in steps of 0.0211639) [0]
 Top-left y position of scan area.
 -x 0..215.872mm (in steps of 0.0211639) [215.872]
 Width of scan-area.
 -y 0..279.364mm (in steps of 0.0211639) [279.364]
 Height of scan-area.
 Enhancement:
 --brightness -127..127 (in steps of 1) [0]
 Controls the brightness of the acquired image.
 --contrast -127..127 (in steps of 1) [0]
 Controls the contrast of the acquired image.
 --threshold 0..255 (in steps of 1) [0]
 Select minimum-brightness to get a white point
 --rif[=(yes|no)] [no]
 Reverse image format
 --ht-type Default|Dither|Diffusion [inactive]
 Control type of halftone filter
 --ht-pattern 0..3 (in steps of 1) [inactive]
 Control pattern of halftone filter
 --emphasis -128..127 (in steps of 1) [0]
 Negative to smooth or positive to sharpen image
 --variance 0..255 (in steps of 1) [0]
 Set SDTC variance rate (sensitivity), 0 equals 127
 Advanced:
 --ald[=(yes|no)] [no]
 Scanner detects paper lower edge. May confuse some frontends.
 --df-action Default|Continue|Stop [Default]
 Action following double feed error
 --df-skew[=(yes|no)] [inactive]
 Enable double feed error due to skew
 --df-thickness[=(yes|no)] [inactive]
 Enable double feed error due to paper thickness
 --df-length[=(yes|no)] [inactive]
 Enable double feed error due to paper length
 --df-diff Default|10mm|15mm|20mm [inactive]
 Difference in page length to trigger double feed error
 --bgcolor Default|White|Black [Default]
 Set color of background for scans. May conflict with overscan option
 --dropoutcolor Default|Red|Green|Blue [Default]
 One-pass scanners use only one color during gray or binary scanning,
 useful for colored paper or ink
 --buffermode Default|Off|On [Off]
 Request scanner to read pages quickly from ADF into internal memory
 --prepick Default|Off|On [Default]
 Request scanner to grab next page from ADF
 --overscan Default|Off|On [Default]
 Collect a few mm of background on top side of scan, before paper
 enters ADF, and increase maximum scan area beyond paper size, to allow
 collection on remaining sides. May conflict with bgcolor option

 --sleeptimer 0..60 (in steps of 1) [0]
 Time in minutes until the internal power supply switches to sleep mode
 --offtimer 0..960 (in steps of 1) [240]
 Time in minutes until the internal power supply switches the scanner
 off. Will be rounded to nearest 15 minutes. Zero means never power off.
 --lowmemory[=(yes|no)] [no]
 Limit driver memory usage for use in embedded systems. Causes some
 duplex transfers to alternate sides on each call to sane_read. Value of
 option 'side' can be used to determine correct image. This option
 should only be used with custom front-end software.
 --side[=(yes|no)] [no] [read-only]
 Tells which side (0=front, 1=back) of a duplex scan the next call to
 sane_read will return.
 --swdeskew[=(yes|no)] [no]
 Request driver to rotate skewed pages digitally.
 --swdespeck 0..9 (in steps of 1) [0]
 Maximum diameter of lone dots to remove from scan.
 --swcrop[=(yes|no)] [no]
 Request driver to remove border from pages digitally.
 --swskip 0..100% (in steps of 0.100006) [0]
 Request driver to discard pages with low percentage of dark pixels
 Sensors:
 --top-edge[=(yes|no)] [no] [hardware]
 Paper is pulled partly into ADF
 --a3-paper[=(yes|no)] [no] [hardware]
 A3 paper detected
 --b4-paper[=(yes|no)] [no] [hardware]
 B4 paper detected
 --a4-paper[=(yes|no)] [no] [hardware]
 A4 paper detected
 --b5-paper[=(yes|no)] [no] [hardware]
 B5 paper detected
 --page-loaded[=(yes|no)] [no] [hardware]
 Page loaded
 --omr-df[=(yes|no)] [no] [hardware]
 OMR or double feed detected
 --cover-open[=(yes|no)] [no] [hardware]
 Cover open
 --power-save[=(yes|no)] [no] [hardware]
 Scanner in power saving mode
 --email[=(yes|no)] [no] [hardware]
 Email button
 --manual-feed[=(yes|no)] [no] [hardware]
 Manual feed selected
 --scan[=(yes|no)] [no] [hardware]
 Scan button
 --function <int> [1] [hardware]
 Function character on screen
 --double-feed[=(yes|no)] [no] [hardware]
 Double feed detected
 --error-code <int> [0] [hardware]
 Hardware error code
 --skew-angle <int> [0] [hardware]
 Requires black background for scanning

Scanning multiple pages (where each page is a separate file)
as colored .PNG image files

Installing the package img2pdf in order to convert .PNGs or
.JPEGs to PDF files

Verifying the package version

Converting and combining scanned .PNGs into a single PDF
file

Using both commands in a "one-liner" command (The ;
indicates that the commands should run sequentially as
separate commands)

Note: I know what the --batch option does: it allows for multiple pages to be scanned with an
Automatic Document Feeder (ADF) scanner. However, when I tried to change the scan%04d.png
filename, this would result in an error. Given my intentions (as explained above), the name of the
scanned .PNG files is irrelevant, because they are combined into a single PDF file anyway. Each
time you scan something with the scanner, create a directory within the ~/scans directory for
your scanned image files (.PNGs or .JPEGs).

1. Now, to

convert all images to pdf in one-go

For instance,

2. Or, to

convert only one image file to pdf

 –

scanimage -y 297 --format png --batch=scan%04d.png --batch-count=10 --resolution
300 --mode Color

sudo apt install img2pdf

img2pdf -V

img2pdf *.png -o pcmag_IT_certification_article.pdf

scanimage -y 297 --format png --batch=scan%04d.png --batch-count=10 --resolution
300 --mode Color; img2pdf *.png -o pcmag_IT_certification_article.pdf

img2pdf <input_file> -o <output_pdf>

img2pdf *.png -o outcome.pdf

af://n2719
af://n2721
af://n2723
af://n2725
af://n2727

3. Specify the files to be converted to pdf

–

In this case only B,png, D.png and E.png will be converted to outcome.pdf

4. Up till now, you may have noticed that images are converted inline with their respective
sizes. We can also

specify page size

 as well –

5. Or, to

specify image size

 –

Cryptography
Encryption - application of cryptography

confidentiality - secrecy

cipher - encryption algorithm

key - secret value required to decrypt

Symmetric encryption - the key used to decrypt is the same as the key used to encrypt

Asymmetric encyption (aka public-key encryption) - the key used to decrypt is different from the
key used to encrypt

Cleartext - information that is stored or sent in an unencrypted form. It is already in its expected
form, consumable and readable. Cleartext has not been subject to encryption whatsoever, and
there is no expectation that it has been.

Plaintext - specifically refers to information that is inputted into a cipher, or encryption algorithm.

Ciphertext is information that is unreadable once it has passed through a cipher or encryption
algorithm.

Storing data in cleartext is an invitation to its theft, altering, destruction, unauthorized
transmission, unsanctioned disclosure, and the like. The database or system where cleartext
passwords are stored, for example, are often protected with passwords and other shared secrets
such as one-time passwords (OTPs).

Encryption turns a plaintext into a ciphertext.

img2pdf A.png -o outcome.pdf

img2pdf B.png D.png E.png -o outcome.pdf

img2pdf B.png D.png E.png --pagesize 18cmx12cm -o outcome.pdf

img2pdf B.png D.png E.png --imgsize 18cmx12cm -o outcome.pdf

af://n2758

Decryption turns a ciphertext back into a plaintext.

Encryption

C = E(K, P)

C represents a ciphertext

E represents a cipher algorithm (encryption mode)

K represents a key

P represents a plaintext

Decryption

P = D(K, C)

D represents a cipher algorithm (decryption mode)

For some ciphers, the ciphertext is the same size as the plaintext; for some others, the ciphertext
is slightly longer. However, ciphertexts can never be
shorter than plaintexts.

The Caesar cipher is so named because the Roman historian Suetonius reported that Julius
Caesar used it. It encrypts a message by shifting each
of the letters down three positions in the alphabet, wrapping back around to A if the shift reaches
Z.

The Caesar cipher is super easy to break: to decrypt a given ciphertext, simply shift the letters
three positions back to retrieve the plaintext. That
said, the Caesar cipher may have been strong enough during the time of Crassus and Cicero.
Because no secret key is involved (it’s always 3), users
of Caesar’s cipher only had to assume that attackers were illiterate or too uneducated to figure it
out—an assumption that’s much less realistic
today.

It took about 1500 years to see a meaningful improvement of the Caesar
cipher in the form of the Vigenère cipher, created in the 16th century by
an Italian named Giovan Battista Bellaso. The name “Vigenère” comes
from the Frenchman Blaise de Vigenère, who invented a different cipher
in the 16th century, but due to historical misattribution, Vigenère’s name
stuck. Nevertheless, the Vigenère cipher became popular and was later
used during the American Civil War by Confederate forces and during
WWI by the Swiss Army, among others.

The Vigenère cipher is similar to the Caesar cipher, except that letters
aren’t shifted by three places but rather by values defined by a key, a
collection of letters that represent numbers based on their position in the
alphabet. For example, if the key is DUH, letters in the plaintext are
shifted using the values 3, 20, 7 because D is three letters after A, U is 20
letters after A, and H is seven letters after A. The 3, 20, 7 pattern repeats
until you’ve encrypted the entire plaintext. For example, the word
CRYPTO would encrypt to FLFSNV using DUH as the key: C is shifted
three positions to F, R is shifted 20 positions to L, and so on. Figure 1-3
illustrates this principle when encrypting the sentence THEY DRINK
THE TEA.

The Vigenère cipher is clearly more secure than the Caesar cipher, yet
it’s still fairly easy to break. The first step to breaking it is to figure out
the key’s length. For example, take the example in Figure 1-3, wherein
THEY DRINK THE TEA encrypts to WBLBXYLHRWBLWYH with
the key DUH. (Spaces are usually removed to hide word boundaries.)
Notice that in the ciphertext WBLBXYLHRWBLWYH, the group of
three letters WBL appears twice in the ciphertext at nine-letter intervals.
This suggests that the same three-letter word was encrypted using the
same shift values, producing WBL each time. A cryptanalyst can then
deduce that the key’s length is either nine or a value divisible by nine
(that is, three). Furthermore, they may guess that this repeated three-
letter word is THE and therefore determine DUH as a possible
encryption key.

The second step to breaking the Vigenère cipher is to determine the
actual key using a method called frequency analysis, which exploits the
uneven distribution of letters in languages. For example, in English, E is
the most common letter, so if you find that X is the most common letter
in a ciphertext, then the most likely plaintext value at this position is E.

GNU Privacy Guard
Better Living through GPG
On Linux, the Swiss Army knife of encryption is Werner Koch's Gnu Privacy Guard (GnuPG) suite.
Its core applications command (gpg) conjures memories of Pretty Good Privacy (PGP), a crypto
tool originally released in 1991 by Phil Zimmermann. Nowadays, OpenPGP is a standard
specifying how encrypted messages and the bits associated with them should be stored and
GnuPG fully implements this standard. GnuPG works from the command line and has a
reputation of being complicated and unfriendly (see https://moxie.org/blog/gpg-and-me). It avails
the user of all the modern private and public key algorithms, as well as all manner of other knobs
to twiddle. As a result, there are a huge number of command-line options and the man pages
make for some lengthy reading. Most distros will install GnuPG as standard, so we shouldn't have
to install anything for this tutorial.

Traditional, symmetric encryption (where two parties share a secret key or password) is all very
well, but it relies on the communicating parties

Generate Public and Private Keys
First, generate your public and private key pair.

gpg --gen-key

Just follow the interactive command line instruction.

After it's done, your key will be at the dir ~/.gnupg . Note: the key files there are all binary files.

Be sure you remember your passphrase.

here's sample session:

xah@xah-p6813w◆ 2014-02-22 19:40 ◆ ~
◆ gpg --gen-key
gpg (GnuPG) 1.4.11; Copyright (C) 2010 Free Software Foundation, Inc.

af://n2788
af://n2789
https://moxie.org/blog/gpg-and-me
af://n2792

This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

gpg: directory `/home/xah/.gnupg' created
gpg: new configuration file `/home/xah/.gnupg/gpg.conf' created
gpg: WARNING: options in `/home/xah/.gnupg/gpg.conf' are not yet active during
this run
gpg: keyring `/home/xah/.gnupg/secring.gpg' created
gpg: keyring `/home/xah/.gnupg/pubring.gpg' created
Please select what kind of key you want:
 (1) RSA and RSA (default)
 (2) DSA and Elgamal
 (3) DSA (sign only)
 (4) RSA (sign only)
Your selection?
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048)
Requested keysize is 2048 bits
Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
Key is valid for? (0) 1y
Key expires at Sun 22 Feb 2015 09:02:45 PM PST
Is this correct? (y/N) y

You need a user ID to identify your key; the software constructs the user ID
from the Real Name, Comment and Email Address in this form:
 "Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: Xah Lee
Email address: xah@xahlee.org
Comment:
You selected this USER-ID:
 "Xah Lee <xah@xahlee.org>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
You need a Passphrase to protect your secret key.

We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.

Not enough random bytes available. Please do some other work to give
the OS a chance to collect more entropy! (Need 282 more bytes)

...+++++

......+++++
We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.

Not enough random bytes available. Please do some other work to give
the OS a chance to collect more entropy! (Need 76 more bytes)

Don't worry if you made a mistake. If this is your first time using gpg, you can delete the whole
~/.gnupg dir and try again.

{List, Import/Add, Export, Find}, Keys

List Keys

gpg --list-keys

Lists all public keys.

Here's sample output:

Note: in the line pub 2048R/07438185 … , the number after the slash is the key ID. Key ID is useful
in many commands.

gpg --list-sigs

List all public keys and signatures.

Export Your Public Keys

now, export your public key.

gpg --export -a

Prints your public key as plain text to screen.

gpg --local-user key_id --export -a

+++++

Not enough random bytes available. Please do some other work to give
the OS a chance to collect more entropy! (Need 28 more bytes)
.+++++
gpg: /home/xah/.gnupg/trustdb.gpg: trustdb created
gpg: key 07438185 marked as ultimately trusted
public and secret key created and signed.

gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: next trustdb check due at 2015-02-23
pub 2048R/07438185 2014-02-23 [expires: 2015-02-23]
 Key fingerprint = C3B1 AFF5 C285 F48E 3FB5 EA61 C811 6AFD 0743 8185
uid Xah Lee <xah@xahlee.org>
sub 2048R/3668BBB3 2014-02-23 [expires: 2015-02-23]

◆ gpg --list-key
/home/xah/.gnupg/pubring.gpg

pub 2048R/07438185 2014-02-23 [expires: 2015-02-23]
uid Xah Lee <xah@xahlee.org>
sub 2048R/3668BBB3 2014-02-23 [expires: 2015-02-23]

pub 2048R/5BB6FE3C 2014-02-26 [expires: 2014-05-27]
uid Xah Lee <xahlee@gmail.com>
sub 2048R/779449FC 2014-02-26 [expires: 2014-05-27]

af://n2801
af://n2802
af://n2814

Prints a specific public key as plain text.

You can place your public key on your website, blog, send it to friend, etc. People need your
public key to send you encrypted files or verify your signature.

Note: somebody else can generate a key pair and send to your friend Alice by email and forge
email header to pretend it's from you. And your friend might be fooled to encrypted a big secret
using this guy's public key thinking it's yours. In general, you shouldn't trust public keys easily.
The detailed security risk is beyond this simple tutorial.

Publish Your Key to Public Key Server

You can send your key to a public-key server, so that other people can easily find your key in
order to send encrypted messages to you.

gpg --send-keys key_id

Upload your public key to default key server.

sample:

You can find your key_id by gpg --list-keys , it's the number after the slash.

the default key server is hkp://keys.gnupg.net/

Import/Add Other People's Public Keys

To send a encrypted message to Alice, you need her public key.

◆ gpg --send-keys 5BB6FE3C
gpg: sending key 5BB6FE3C to hkp server keys.gnupg.net

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.11 (GNU/Linux)

mQENBFMJgWoBCADTLgXzbRSyPazY+M8j7trJ9hk4B1WYMd79ut7/fEq39s7iR3eb
7LH8ngbnlLsWeNwalZl3LGP3Yu1sCW9lB2nMw8BaP9B5/NN+YaX4y3XJiz10p3JO
jW4cz12Pd/kOrUyAOViNJStPYVmXOJZ0BvwZzxXJPuiJRbWWwZY5VKhjdWEUycF3
GpBKLB0X8uGXXhFIeKQ2v4mZIBYj8vdKbGIPBDFOtRLbhY/sj2je6Er8XF7BIFBQ
msEnGj0kehxqCv6RZkd8RdHTgItOzG+qowitG6YG/rjFY3Mrranc41pAB4tZ0IkU
oX+/rZRo0iizcRnL9SRvk2sHP/D/FG68QiR/ABEBAAG0GFhhaCBMZWUgPHhhaEB4
YWhsZWUub3JnPokBPgQTAQIAKAUCUwmBagIbAwUJAeEzgAYLCQgHAwIGFQgCCQoL
BBYCAwECHgECF4AACgkQyBFq/QdDgYV72wgA0spK+mLZv5RGym9BNleDfi531sF3
I4KrI4t4SuBNA1u5l7wvCm7+SWN/oiuZjkhIxd3OMeePmH3D9JnopLbMQGtYYR4W
q0YpGbkoE898gH/Bm3+IiRkQthCAjxWKEGkrLqeQq2Td4/TxTT9oDg+eHZNtcEsp
0WU+/JEeaFDiAIgp1cOZ5PyZ1g/upnECZ3HD/gkFUTbBeNJmJCW1HT7l2yBa/SMt
8lcpdWaCKDJqiK6hvo3fZMILLyQg+5zbGLPhrkn9R92OCK8EWc4zJVjwWslyxqy5
Dsjs1Lh0SXFb2TEgkWGvp1Pn8niOVimhytY+zEyMm/qz17aCbSSt5bi3cLkBDQRT
CYFqAQgAxy3iLFGv583IhDXphiq04f92BunbNCdwLvDqqzoPuFdp+YfwEkvyTBKS
PiFrNWXXiTThoIbSQSMEkQnyxZkWTIK2UBe1Qpb7B+oSPrLSMVCN+CTc87FiEJnT
iY5x7gtzeCKRUguMXfY1WxyI0gsrichRF8Yy/wQgGgXCpyzgYDlcYxMtGxMl0Nq/
5kma9T64EmT62j1sPvVbqwnRBiMdYld5I31tISi1UZMPvF9wkLk9F92TDbmJzR4c
0Xx9tGsa2FYK/vmh5TruA0bI+Zs0fjeRhB6xFXouE/bDM0V8pCCj32yjwesBeM7J
6nVJIF5nf/+epiur9E5DvpYA1HR6TwARAQABiQElBBgBAgAPBQJTCYFqAhsMBQkB
4TOAAAoJEMgRav0HQ4GFVQsH/2Xip8v8Ux8zSoGbKmdnF39Ma8cOqEw6RlOfkbRu
voXsedZWr5NpAndhrM1oMIPeZU8tXLKzhJLYENqiJ/fTWZVmqKQDcqI4OymvT4C4
Cu/3luqGC0iPpy+qmgg5nQzi142O5SXwM8hQ9/8RZKuI2gtFA8eP7G8mhsIPG73a
UGaquh1p3fxa8MMjxPXd6y40PM71NSQ9rkbwm9Zx7MU3cpOjrXXxtM52WnaxtaIR

af://n2825
af://n2835

Find People's Keys

Often, people's keys are on a key server.

gpg --search-keys name

Search a key by name. The name is any string, usually people's name or email address.

sample output:

Once you find the person, you can import the key by:

gpg --recv-keys key_id

Import a key identified by key_id to your keyring.

Revoke Key
if your computer got stolen (your secret is stolen), you need to revoke your key.

to revoke, you need your passphrase, and your secret key in your computer.

gpg --gen-revoke

Revoke your key.

Sign Documents
you can use gpg to digitally sign documents, so that others know you signed it.

gpg --sign file

Create a signed file. This will create a file in the same path, with .gpg suffix in file name. The
created file is compressed binary file.

gpg --clearsign file

Same as --sign , but create a plain text file. The newly created file will have .asc name
suffix.

Mycv7Axvv9MRDgTI5ozmxPxbthLKyk5XFCG6Tv8zro911qW6vFCfzpQquO1HTtFM
l9xhK+JJFC/S02oSALpBG5noAoxmM4VILvjMzIU7nS65Quw=
=PwPW
-----END PGP PUBLIC KEY BLOCK-----

◆ gpg --search-keys xah
gpg: searching for "xah" from hkp server keys.gnupg.net
(1) Xah Lee <xahlee@gmail.com>
 2048 bit RSA key 5BB6FE3C, created: 2014-02-26
(2) Xah Lee <xah@xahlee.org>
 2048 bit RSA key 07438185, created: 2014-02-23
(3) Łukasz Rumiński <xah-luk@o2.pl>
 2048 bit RSA key CA9CBC6B, created: 2012-04-12
(4) Łukasz Rumiński <xah-luk@o2.pl>
 2048 bit RSA key C26152F8, created: 2012-03-29
(5) Xah Lee <xah@xahlee.org>
 1024 bit DSA key CB8F3E74, created: 2000-03-25
Keys 1-5 of 5 for "xah". Enter number(s), N)ext, or Q)uit > q

af://n2838
af://n2851
af://n2858

Sign Documents with Different Key

gpg lets you create many key pairs. To specify a particular key, use the --local-user option, like
this:

gpg --local-user xahlee@gmail.com --sign myfile.txt

The --local-user option can be used with other commands to specify a key.

Verify Signed Documents

You need the other person's public key in your keyring. If you haven't done so, use gpg --import
key_file_name .

Encrypt File
you can encrypt your files.

gpg --encrypt file_name

Encrypt a file using your own public key. So, only yourself can decrypt it later.

gpg --encrypt --recipient name file_name

Encrypt a file for name to read, using name's public key. The name is the “uid” in man gpg
doc.

You must have name's public key in your keyring. If not, use --import first.

gpg --list-public-keys to show a list of name (uid).

When you encrypt a file for Alice to read, you can and should also sign the file. So, when Alice
reads it, she also has confidence that YOU encrypted it, not somebody else.

gpg --encrypt --recipient name --sign file_name

Encrypt a file for name to read, and sign it with your name.

Decrypt File
gpg --decrypt file_name

Decrypt a file using your secret key. The file must be one that's encrypted by your public key.
The output is printed to the screen.

gpg --decrypt file_name > output_file_name

Decrypt a file and save it as output_file_name.

Cybersecurity Tools for configuring and
troubleshooting network connectivity

Linux and other Unix-based systems often offer several alternatives for solving a single problem.
Although this approach can be confusing to some novice admninistrators, it is one of the defining
features of the open source environment.

gpg --verify file

af://n2867
af://n2873
af://n2876
af://n2892
af://n2901

The networking tool collection is no exception to this practice. You'll find an array of useful tools -
some overlapping and some unique - for configuring, managing, and troubleshooting network
connections.

In this article, we highlight some favorite tools in the networking collection. Of course, a full
description of the complete TCP/IP networking environment could fill up a very long book. Here
are some basics related to the TCP/IP and OSI models.

These two acrostics go from physical layer to application layer:

Please Do Not Throw Sausage Pizza Away
Please Do Not Touch Steve’s Pet Alligator

And these acrostics go the other direction, from application to physical:

All People Seem To Need Data Processing (a popular one)
All People Standing Totally Naked Don’t Perspire (hmm, that’s interesting!)
All People Should Teach Networking Daily Please

OSI Model by GhaziAnwar

Table 7.2: OSI Reference Model Layer Summary

https://www.scribd.com/document/405723668/OSI-Model#from_embed
https://www.scribd.com/user/252359518/GhaziAnwar#from_embed

Layer Name Key Responsibilities Data Type Handled Scope

Common
Protocols
and
Technologies

1 Physical

Encoding and signaling; physical
data transmission; hardware
specifications; topology and

design

Bits

Electrical or
light signals
sent between
local devices

Physical
layers of
most of the
technologies
listed for the
data link layer

2 Data Link

Logical link control; media access
control; data framing; addressing;

error detection and handling;
defining requirements of physical

layer

Frames

Low-level data
messages
between local
devices

IEEE 802.2
LLC, Ethernet
family; Token
Ring; FDDI
and CDDI;
IEEE 802.11
(WLAN, Wi-Fi);
HomePNA;
HomeRF;
ATM; SLIP
and PPP

3 Network

Logical addressing; routing;
datagram encapsulation;

fragmentation and reassembly;
error handling and diagnostics

Datagrams/packets

Messages
between local
or remote
devices

IP; IPv6; IP
NAT; IPsec;
Mobile IP;
ICMP; IPX;
DLC; PLP;
routing
protocols
such as RIP
and BGP

4 Transport

Process-level addressing;
multiplexing/demultiplexing;

connections; segmentation and
reassembly; acknowledgments

and retransmissions; flow control

Datagrams/segments

Communication
between
software
processes

TCP and UDP;
SPX;
NetBEUI/NBF

5 Session
Session establishment,

management, and termination
Sessions

Sessions
between local
or remote
devices

NetBIOS,
Sockets,
named pipes,
RPC

6 Presentation
Data translation; compression and

encryption
Encoded user data

Application
data
representations

SSL; shells
and
redirectors;
MIME

7 Application User application services User data
Application
data

DNS; NFS;
BOOTP;
DHCP; SNMP;
RMON; FTP;
TFTP; SMTP;
POP3; IMAP;
NNTP; HTTP;
Telnet

The Network Interface layer of the TCP/IP model is equivalent to the data link layer (layer 2)
in the OSI Reference Model and is sometimes called the link layer.

LINK LAYER Services

Framing, link access

Encapsulates datagram into frame, adding the header and trailer

Channel access if shared medium

"MAC" addresses used in frame headers to identify the source and destination

Different from IP address!
Reliable delivery between adjacent nodes

We learned how to do this already (chapter 3)!

Seldom used on low-bit error link (fiber, some twisted pair)

Wireless links: high error rates

Q: Why both link-level and end-end reliability?
Flow control

Pacing between adjacent sending and receiving nodes
Error detection

Errors caused by signal attenuation, noise.

Receiver detects presence of errors:

Signals sender for retransmission or drops frame
Error correction

Receiver identifies and corrects bit error(s) without resorting to retransmission
Half-duplex and full-duplex

With half-duplex, nodes at both ends of link can transmit, but not at the same time

LINK LAYER Location

In each and every host

Link layer implemented in "adapter" (aka network interface card (NIC)) or on a chip

Ethernet card, 802.11 card; Ethernet chipset
Implements the link layer and the physical layer

Attached to host system buses

Combination of hardware, software, and firmware

On the sending side, the controller takes a datagram that has been created and
stored in host memory by the higher layers of the protocol stack, encapsulates the
datagram in a link-layer frame (filling in the frame’s various fields), and then
transmits the frame into the communication link, following the link-access proto-
col. On the receiving side, a controller receives the entire frame, and extracts the
network-layer datagram. If the link layer performs error detection, then it is
the sending controller that sets the error-detection bits in the frame header and it
is the receiving controller that performs error detection.

Figure 5.2 shows a network adapter attaching to a host’s bus (e.g., a PCI or
PCI-X bus), where it looks much like any other I/O device to the other host com-
ponents. Figure 5.2 also shows that while most of the link layer is implemented in
hardware, part of the link layer is implemented in software that runs on the host’s
CPU. The software components of the link layer implement higher-level link-
layer functionality such as assembling link-layer addressing information and acti-
vating the controller hardware. On the receiving side, link-layer software responds

af://n2980
af://n3031

ip and ifconfig

ip commands are typically more complex than their ifconfig equivalents. For instance, to
display the configuration of the enp0s31f6 interface, the ifconfig command is simply

ifconfig enp0s31f6 .

The ip command is part of the iproute package. The similarity between the tools in this
package enables you to master the configuration of your network more quickly because you
do not need to learn different syntax options for different functions. Furthermore, you don't

need to remember which utility does what because, for the most part, ip integrates the
capabilities of ifconfig , route , and arp into a single tool.

to controller interrupts (e.g., due to the receipt of one or more frames), handling
error conditions and passing a datagram up to the network layer. Thus, the link
layer is a combination of hardware and software—the place in the protocol stack
where software meets hardware. Intel [2012] provides a readable overview (as
well as a detailed description) of the 8254x controller from a software-program-
ming point of view.

Interfaces
The name starts with two characters for the type of interface: en for Ethernet, wl for WLAN, ww
for WWAN. The type is then distinguished: o<Index> represents an onboard interface with an
ordinal number; s<Slot> is a slot card with an ordinal number, and p<Bus>s<Slot> reveals the
location of the PCI card. Examples of the results are, say, enp2s0 or enp2s1 . This shows just a
small part of the naming scheme; more information can be found online [4] [5]. I like the
documentation at [5].

Version 197 of the systemd startup daemon unveiled a new method for naming devices. Instead
of assigning consecutive device numbers to network devices, systemd assigns a predictable
network device name based on identifying information about the device itself, such as:

information provided in the BIOS
the physical location of the hardware
the interface's MAC (hardware) address

The system uses this information to assign a unique (and reproducible) number for the device.
This number is then combined with a two-character prefix, such as en for wired Ethernet or wl
for wireless LAN. For instance, an Ethernet adapter might have a logical name like enp0s31f6 and
a wireless network interface might have the logical name wlp4s0 . The examples in this article use
the interface name enp0s31f6 - if you try these commands, change enp0s31f6 to the logical
name of your own network adapter.

The ifconfig command was, and still is on many systems, the default tool for configuring
network interfaces. However, ifconfig is often considered obsolete, in that newer tools are
provided for systems running kernels newer than 2.0. The ifconfig command is still available as
part of the net-tools package, though, in all likelihood, it is automatically installed on your system.

On newer Linux systems, you also get the ip command. More than just a newer version of
ifconfig , ip is the workhorse of the new generation of network tools. Not only does it integrate
the functionality of several older tools, but ip also provides a unified syntax across all the various
functions. In contrast, the utilities provided by the net-tools package are a patchwork collection of
tools that were developed individually over many years.

af://n3048
https://www.admin-magazine.com/Archive/2013/17/Udev-with-virtual-machines/(offset)/6#article_i4
https://www.admin-magazine.com/Archive/2013/17/Udev-with-virtual-machines/(offset)/6#article_i5

The generic usage is

where OBJECT is something like ip for your IP configuration, link for a network interface, addr for
your IP address, route for routes, and so forth. (The ip command also supports several other
objects - see the ip man page for more details).

In the context of the ip command, a "link" is a network device, real or virtual. To display the
details of a specific interface, you might enter the following:

This command might give you something like the output shown below.

In most cases, the default argument is show, which displays the basic parameters of the given
object. The default behavior is to display the information for all objects if none is specified. For
example, ip addr will show (i.e., display) the address information about all network interfaces. If
you want, you can use list instead of show . (Most users think about "listing" devices rather
than "showing" them.)

This form of the ip addr command is composed of three parts: show dev enp0s31f6 . One
could say that the command-within-a-command is show with dev enp0s31f6 acting as arguments.

If you want to add a virtual interface called enp0s31f6:1 , the command would look like this:

In this case, you can think of 192.168.1.42 dev enp0s31f6:1 as arguments to the add command. The
example here adds the IP address 192.168.1.42 to the device enp0s31f6:1.

With the ip command, you can also enable and disable interfaces (i.e., bring them up or down):

In this example, the command set; set and view are the two options the link object accepts.

The ifup command is another option for starting up a network interface. As you would expect,
there is also an ifdown command, which is a symbolic link to ifup .

Routing

ip [OPTIONS] <OBJECT> [COMMAND]

ip addr show dev enp0s31f6

jcasad@Thinkie:~$ ip addr show dev enp0s31f6
2: enp0s31f6: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast sta
 link/ether 54:ee:75:a4:ea:b3 brd ff:ff:ff:ff:ff:ff
 inet 10.0.0.121/24 brd 10.0.0.255 scope global dynamic enp0s31f6
 valid_lft 2415sec preferred_lft 2415sec
 inet6 fe80::2cf8:b850:3274:fcde/64 scope link
 valid_lft forever preferred_lft forever
jcasad@Thinkie:~$

ip addr add 192.168.1.42 dev enp0s31f6:1

ip link set up dev enp0s31f6

af://n3085

If you were to imagine that network traffic is something like a letter you're sending to a friend, you
would know their name (hostname) and address (IP address), and all you need to do to get the
letter to your friend is address the letter, put a stamp on it, and stick it in the mailbox (gateway).
However, between your gateway and the friend's gateway, the letter has to be routed between
you and your friend.

The post office maintains a set of routes to deliver letters, and hosts on the Internet maintain
routing tables to send packets to and fro. Usually the only route you have to worry about is the
default gateway for your system. On your home LAN, this is the modem or DSL router that
connects you to the Internet. For example, on my home network, the default route is
192.168.1.254.

The need to define network routes manually has decreased over the years. Most home and office
networks today provide dynamic IP address assignment through DHCP, which includes
information on the default gateway for the network.

Even if you explicitly define your network configuration - at installation or through the resident
configuration utility for your Linux distribution - the tool typically asks you to specify a default
gateway and the rest of the routing happens automatically. However, for complex network
configurations, such as computers with multiple network interfaces or routed networks with
multiple paths, you might occasionally have the need to add information directly to the routing
table - for configuration, optimization, or troubleshooting purposes. If your system loses or
doesn't have a default route and it isn't a gateway, then you're not going to be delivering any
packets.

The traditional method for adding and managing routes is the route command. The ip route
command is a more recent alternative with similar functionality.

Adding a route with route will look something like this:

The same thing with the ip command would look like:

As you can see, the format is basically the same as when you added IP addresses. In this case, the
object is a route and the command is add. Note that both commands add the route for a range of
IP addresses (192.168.42.0/24 - in CIDR format), and this route is assigned to a router address -
with the gw ("gateway") argument in the route command and the more intuitive via with ip route.

If you enter the ip route command without any modifying arguments, you are shown the list of
configured routes. Although this is not any simpler than running route, I think the output is a little
more useful. For example, the output for the default route shown by ip is:

whereas the output for route is more elaborate (Figure 2).

route add -net 192.168.42.0/24 gw 192.168.1.99

ip route add 192.168.42.0/24 via 192.168.1.99

default via 192.168.2.1 dev enp0s31f6

With the use of route and ip, you can hand-configure routes aside from the gateway. Say you have
two interfaces on want to ensure that the enp0s31f6 interface is used for the 192.168.42.0/24
network:

Now traffic headed to 192.168.42.0 will go through enp0s31f6. One caveat - this all goes away
when you reboot. Static routes set by hand are not persistent by default. The kernel will "forget"
everything unless you make this permanent. How do you make them permanent? This is,
unfortunately, a bit more complicated. Different distributions set their network configurations
differently - and have different tools for configuring the network configuration.

For example, if you're using Red Hat or Fedora, you'll find networking scripts under
/etc/sysconfig/network-scripts , whereas Debian-based systems keep their information under
/etc/network/interfaces . If you're using a desktop system, you might want to use Network
Manager to make changes rather than using text files.

Users on openSUSE or SUSE Linux Enterprise Systems should use YaST2 to make changes. Bottom
line, if you need to set up persistent routes, you'll probably want to consult your distribution's
documentation.

Names to Numbers and Back
The Address Resolution Protocol (ARP) relates a host's IP address to the hardware address (MAC
address) assigned to your network adapter. Historically, the ARP tables were read and managed
by the arp command. You might not often need to touch arp , but it's handy to know you have
the option of monitoring and managing the way your system handles address resolution.

Note that you only have ARP information about "neighbor" hosts on your local network. If you
have a private 192.168.1.0/24 network, you can use arp 192.168.1.71 and get something like
Figure 3.

If you haven't pinged or interacted with the host previously, you won't have anything in the cache,
so you can have two machines sitting next to one another on the network that have no ARP cache
entries for their neighbors. If you ping the machine, you'll be able to get the ARP entry, which will
include the MAC address under the HWaddress column.

Not surprisingly, the ip command provides a replacement. The object, in this case, is neigh for
"neighbor."

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.2.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 192.168.2.1 0.0.0.0 UG 0 0 0 eth0

route add -net 192.168.42.0 netmask 255.255.255.0 gw 192.168.1.254 dev enp0s31f6

[jzb@f14 network-scripts]$ arp 192.168.1.71
Address HWtype HWaddress Flags Mask Iface
192.168.1.71 ether d4:9a:20:57:6f:e4 C eth2
[jzb@f14 network-scripts]$

af://n3105

Shorthand

One interesting and useful aspect of the ip command is that, when specifying an object, you
do not need to type the entire object name. A number of the objects described in this article
are abbreviations for the actual objects; for example, address is the object and addr is just an

abbreviation, neigh is an abbreviation for neighbor, and so forth. The command ip l will
show you the configured links just as ip link would. Note, however, that in a couple of

cases multiple objects start with the same letter - for example, address and addrlabel. If you
input just ip a , you are shown the addresses rather than the address labels. In general, the
more common objects are recognized first. Also, you can use abbreviations for commands as

well as objects.

The arp output for a specific host might look something like

where the output from ip neigh would look like:

Both commands output the IP address (192.168.2.67), the MAC address (lladdr 00:80:77:b8:1f:f6),
and the network interface (enp0s31f6) that connects to this address.

Troubleshooting
Once you have finished configuring the network, you might need to check to ensure that packets
can reach remote hosts. The ping command verifies that the networking system can successfully
support communication with another computer on the network. You can specify either the
hostname or the IP address:

The output shows a report for each packet in an unending list that includes information on
whether the attempt was successful or not, along with the response times. Although this
continuous output can be useful for testing purposes, it is easily ended with Ctrl + C . To limit
the number of packets, use the -c (count) option.

You might want to ping using a specific interface to try to troubleshoot networking problems. For
example, if you have a server with two or more interfaces, you can specify the enp0s31f6
interface to use with ping -I enp0s31f6 (replace enp0s31f6 with the name of the interface
you'd like to use).

The ping command also allows you to set the interval between packets. The default is one
second for each packet, or to send as fast as the system can with the -f (flood) option. Note that
only root can use the flood option. To specify the interval, use ping -i NN where NN is the
interval. This can be a fraction of a second, so if you want to send a ping every half second, use:

192.168.2.67 ether 00:80:77:b8:1f:f6 C enp0s31f6

192.168.2.67 dev enp0s31f6
lladdr 00:80:77:b8:1f:f6
REACHABLE

ping 192.168.1.99

ping -i 0.5 192.168.1.99

af://n3121

 Another option, short of using flood, is to preload the number of packets to be sent. This option
will send a predetermined number of packets without waiting for a response. To send more than
three, you'll need to use sudo or be root. The preload option is specified with -l , like so:

Replace NN with the number of packets that you'd like to send.

Finally, you might want the Time to Live (TTL) option using the -t option. TTL is the maximum
number of routers that a packet can travel before being thrown away.

Admins sometimes have the need to check the route a packet takes to its destination. Just
because you can't reach a site doesn't mean the problem is on your network or the destination
network - sometimes the problem is in between.

For example, say you can't reach Woot.com for some reason. It could be that Woot.com is down, or
that you have a networking issue on your side. Or it might be that the problem lies between your
network and Woot.com's network, and one way to figure this out is by using utilities to trace the
path that packets are taking.

The traceroute command and the newer tracepath utility provide this information. The
tracepath utility is part of the iputils package that also includes ping . Although traceroute is
the older utility, it has many more options than tracepath . In essence, the only thing you can
pass to tracepath is a destination port number. On the other hand, traceroute allows you to
specify time-to-live values, maximum hops, a specific interface to use, and many more options.

The basic syntax is simple enough: Use traceroute host and you'll see a listing of the hosts
between your computer (or the system you are running traceroute on) and the final
destination. Because you're using traceroute to check for overall latency and problems, if a host
returns *** but the packets are reaching their destination, this is OK.

The maximum TTL (number of hops) is usually set to 30. You might have more than 30 hops
between yourself and the final host. To change this, use the -m option, like so:

This line would increase the number of hops to 35. Adjust if necessary.

Once again, you might need to use traceroute to debug specific interfaces on a machine. To do
this, you can use -i (interface), -s (source address), or both options. A machine could have two
or more IP addresses without actually having more than one interface, or each interface might
have its own address. Therefore, if you want to specify an IP address on a system's second
Ethernet interface, use:

Naturally, you'll want to replace the IP address with the appropriate address. If the path of the
packets is inefficient or unexpected, route or ip route will show you what routes are
configured. Note that you only see the route configured from the local machine; it is very possible
the problem might lie elsewhere.

ping -l NN 192.168.1.99

traceroute -m 35 linuxpromagazine.com

traceroute -i enp0s31f6 -s 192.168.1.100

Possibly a given router is explicitly configured not to provide any details. So, for example,
tracepath might report "no reply." This situation does not mean you cannot connect to the
target (which you can verify with ping); it simply means the intermediate router is not
responding to the request from tracepath (or traceroute).

The tracepath documentation specifies that it is not a "privileged program" and can be executed
by anyone. Although this is true, I have never had any trouble running traceroute as a normal
user, except that it is usually not in a normal user search path.

Other troubleshooting utilities include the netstat command (which outputs information on
connections, routing tables, and interface statistics) or the newer ss utilities. Although ss is part
of the iproute package, its syntax is different from ip . See the ss man page for more
information.

Troubleshooting DNS
The Domain Name System (DNS) translates the familiar alphanumeric domain names used in
email addresses and web URLs (such as linuxpromagazine.com or whitehouse.gov) to and from the
numeric IP addresses necessary for TCP/IP networking. As long as your system knows the location
of a DNS server, this name resolution process happens invisibly; however, sometimes some
troubleshooting is necessary. Also, sometimes for informational purposes, it is important to know
the IP address associated with a domain name or the domain name associated with an IP
address. A pair of classic Linux utilities that allow you to query the DNS system are nslookup and
host , both of which are part of the bind-utils package. nslookup provides more functionality
and more extensive output than host ; however, nslookup is considered outdated and less able
than some more modern equivalents.

A powerful and popular DNS tool in use today is dig , which is short for "domain information
groper." Basically, dig performs a DNS lookup and then shows the results. The most basic use is

which should return quite a bit of output, including an answer section with the hostname and (by
default) the IP address associated with the hostname.

But dig can tell you much more. For example, if you want to see what DNS servers the domain
uses, run dig NS hostname - this command will return a list of DNS servers responsible for
translating the domain name to an IP address.

In the output, you also see what DNS server(s) dig has used to perform its lookups. Here, I'm
using Google's DNS:

The SERVER is 8.8.8.8 - one of Google's public DNS servers. If you can't look up a hostname with
your default servers, you can try using a different server by specifying it like this,

which tells dig to use the second Google DNS server.

dig <hostname>

;; Query time: 40 msec
;; SERVER: 8.8.8.8#53(8.8.8.8)
;; WHEN: Fri Feb 4 17:01:16 2011
;; MSG SIZE rcvd: 138

dig @8.8.4.4 www.linuxpromagazine.com

af://n3145

When is this useful? For one thing, you can query a DNS server to see if it has information that
hasn't propogated to your ISP's DNS servers. This information can be handy so that you can check
to see whether you've changed DNS correctly before it propogates by querying the servers
directly.

Finally, you can use dig to find any kind of DNS record. Want to see the MX (mail) hosts are for a
given domain? Use the MX directive:

Putting It All Together
The ping utility is the simplest way of ensuring that you can reach a remote computer. If ping
works, you can usually assume the network is configured correctly (or at least correctly enough
for the packets to arrive at their destination). To be sure things are configured properly , check
whether you can reach the remote machine with either the hostname or the IP address, the
problem is most likely with DNS, so use the dig utility to try that out.

Interestingly enough, if you can reach it with the hostname, but not with the IP address, this often
indicates a DNS problem as well (the entry for that host points to the wrong IP address).

If you cannot connect with either the hostname or IP address, the simplest approach is to start
with the local machine and work your way outward.

The first question is whether the IP is configured correctly on the local system. To check the IP
configuration, use ip addr (or ip a to be even lazier). Then ping the router to ensure that you
are connected to it, and, if that works, ping another address beyond the router to ensure that
the router is forwarding packets successfully. If you still haven't identified the problem,
traceroute or tracepath should provide clues about where the packets are getting lost.

Tools for Supporting Wireless Networks
In recent years, wireless connectivity has become nearly automatic, with a few connection settings
handled mostly through the GUI interface. However, it is certainly still possible to search for
wireless networks and initiate connections at the command line.

The iw utility used to be the leading tool for text-based wireless configuration in Linux, but iw
only works with the unsafe and obsolete Wired Equivalent Protocol (WEP). Most Linux systems
today use (Wireless Protected Access) WPA supplicant [1] with the wpa_cli front end for terminal
sessions. A new tool called the iNet Wireless Daemon (iwd) is a smaller and simpler tool that
could one day replace WPA Supplicant as the standard option for command-line wireless
configuration.

WPA Supplicant
Most distributions come with wpa_supplicant preinstalled. The standard configuration file is
found in /etc/wpa_supplicant/wpa_supplicant.conf . If you don't have this file, Ubuntu users
can find an example in /usr/share/doc/wpa_supplicant/examples . Use

dig MX linuxpromagazine.com

sudo gunzip -k
wpa_supplicant.conf.gz

af://n3159
af://n3164
af://n3167

to extract the compressed file, and then move it with the mv command to the
/etc/wpa_supplicant directory.

The configuration file normally contains information about the control interface
(/var/run/wpa_supplicant). Some distros also define a group like netdev or wheel , which
means that members of those groups may execute the wpa_cli front end. Uncomment or add
this line to give the wpa_cli front end permission to modify the file:

Next, start wpa_supplicant as a daemon in the background and define the wireless interface and
the configuration file:

Next, start wpa_cli . Figure 1 shows how to check the status of the program. You can scan for
available networks with scan and show the results with scan_results . Use add_network to
connect to a network from the results, or if you already know the SSID, you can enter the details.
The networks are indexed numerically, so the first network is number 0:

Finally, you can add and save your network credentials:

To set the credentials, enable the network, and then save your configuration.

wpa_passphrase
Included in the WPA Supplicant package is wpa_passphrase , which modifies the configuration file
and offers an alternative to wpa_cli . You can use this command to connect to a network with
(E)SSID you already know:

The tool prints a network section as it is used in the
/etc/wpa_supplicant/wpa_supplicant.conf configuration file. The file may contain several of
these blocks to define connections for more than one network and various security policies,
including pre-shared keys (Listing 1).

update_config=1

wpa_supplicant -B -i wlan0 -c
/etc/wpa_supplicant/wpa_supplicant.conf

> add_network 0

> set_network 0 ssid "CROCODILE"
> set_network 0 psk "crocodile123"
> enable_network 0
> save_config
> quit

wpa_passphrase CROCODILE
secret_passphrase

af://n3180

Listing 1: /etc/wpa_supplicant/wpa_supplicant.conf

To add the output of the previous wpa_passphrase command to the configuration file, use the >>
operator:

Make sure you use >> rather than > to add the output to the configuration file, otherwise, you will
overwrite the existing file. Fo help configuring your network connections, check out the
wpa_supplicant man page or refer to the wpa_supplicant.conf example file if you have one.

iwd
WPA Supplicant has seen many improvements through the years, and, in general, it is much
easier to connect Linux to a wireless network than it used to be. However, many experts believe
that Linux wireless support is due for some reinvention. The world got a scare a few years ago,
when WPA supplicant was shown to be susceptible to the KRACK attack on the WPA2 protocol [2].
Since then, KRACK vulnerabilities have been patched, and WPA3 has taken wireless security to a
deeper level, but the complications in implementing a reliable solution underscored the inherent
complexity and ungainliness of the WPA Supplicant codebase. That complexity, along with many
dependencies, also means that WPA Supplicant is ill-suited for mobile devices and Internet of
Things configurations. The need to simplify and provide a better solution for these technologies
explains why efforts have been underway for several years to create a lean alternative to WPA
Supplicant.

One alternative that has already arrived, although it still is not installed by default on most Linux
systems, is the iNet wireless daemon (iwd) [3] [4]. Intel has been leading the development of
iwd . In October 2019, the stable 1.0 version was released, and iwd continues to evolve.
NetworkManager versions from 1.12.0 on can use iwd as their back end. Iwd also works with
alternatives such as ConnMan and systemd-netword . And recently, a small GUI was released for
users who want to do without NetworkManager or ConnMan . You can also access iwd from the
command line using the iwctl command.

At this writing, iwd is still not installed by default on many Linux systems. If iwd is not on your
Linux system, you'll need to take some preliminary steps (Listing 2). Line 1 in Listing 2 checks if
iwd is already installed. You'll need to install iwd and then remove NetworkManager (line 4) and
disable WPA (lines 5-7). Finally, enable iwd (lines 8 and 9). and check to see if everything is working
(line 10).

home network; hidden (E)SSID asteroid
network={
 ssid="CROCODILE"
 #psk="crocodile123"
 psk=855f5a29480465b0e54562dd9693435c108c314551d693cd0e36118f9c5d95d5
}

wpa_passphrase asteroid secret_passphrase >>
/etc/wpa_supplicant/wpa_supplicant.conf

af://n3184
af://n3190

Listing 2: First Steps (look at Figure 2 on page 81 in Linux
Shell Handbook - 2021 Edition)

It is a bad idea to remove the wpasupplicant package after the preliminary work is complete,
instead of just disabling it. On Ubuntu, removing wpasupplicant would also remove the ubuntu-
desktop metapackage due to many dependencies. On Debian, NetworkManager would be
removed as well - which might be a benefit in some cases.

WLAN Setup
Once you have completed the necessary steps, and assuming the status query is positive, you can
setup WiFi access. If you get a message about rfkill blocking (Figure 2), call the command:

If Soft blocked shows up as yes, pressing Fn + F5 might help to switch off flight mode. If this
does not help, use:

Check if this worked with rfkill or a new status request for iwd.service .

Now launch an interactive shell as a normal user with the iwctl command. Typing help lists all
the available options. To exit the shell, press Ctrl + D . Iwd can also be used without an
interactive shell; you just have to prefix each command with iwctl . Use device list to
discover the name the system is using for the interface (Figure 3). If the interface goes by the
name of wlan0. The command

delivers more details about the network interface card. Now scan by typing station wlan0 get-
networks to display the available networks.

Enter the following command:

to enable the connection. The requested password is stored in /var/lib/iwd when input with
the .psk suffix.

If needed, check the functionality again by typing:

01 $ systemctl status iwd.service
02 Unit iwd.service could not be found.
03 $ sudo apt install iwd
04 $ sudo apt purge network-manager
05 $ sudo systemctl stop wpa_supplicant.service
06 $ sudo systemctl disable wpa_supplicant.service
07 $ sudo systemctl mask wpa_supplicant
08 $ sudo systemctl enable iwd.service
09 $ sudo systemctl start iwd.service
10 $ systemctl status iwd.service

sudo rfkill list wifi

sudo rfkill unblock wifi

device wlan0 show

station device_name connect network_name

af://n3194
af://n3197

A check mark, hardly visible against the dark color scheme of the Ubuntu terminal, indicates that
the connection was successfully opened. Then use ping to check the status of the Internet
connection or browse to a website. After rebooting the computer, iwd automatically re-stablishes
the wireless connection.

If the connection fails, or if problems occur while roaming through changing networks, create a
/etc/iwd/main.conf file with the content from Listing 3.

Listing 3: main.conf

The configuration causes iwd to hand over name resolution to systemd-resolved . resolvconf is
also available as an alternative.

Using Samba (setting up a Samba share)
Samba shares allow you to transfer files and directories between Linux systems and non-Linux
systems as if they were mounted locally to your Linux system. It took me four days of work
(summer of 2021) to figure this out. This setup procedure may not be flawless, but it worked
pretty well for me at the time. One thing that I've learning about troubleshooting computers over
the years is "Just because it worked on somebody else's system, doesn't necessarily mean that it
will work on my system." Keep that in mind. If this procedure works for you without a hitch, that's
great. Otherwise, get to googling and figure it out for yourself. Linux is all about the "trial and
error" heuristic. Hence the quote from programmer Jamie Zawinski, co-founder of the Mozilla
Project: "Linux is only free if your time has no value." Forget that noise and work the problem.

On a Linux machine (source: https://ubuntu.com/se
rver/docs/samba-file-server)

1. sudo apt install samba

2. Edit the following key/value pairs in the [global] section of /etc/samba/smb.conf .

1. sudo nano /etc/samba/smb.conf

2.

3. Under Share Definitions: (# initiates comment in bash)

status device_name get-networks

[General]
EnableNetworkConfiguration=true
[Network]
NameResolvingService=systemd

workgroup = WORKGROUP
security = user
wins support = yes

af://n3213
af://n3216
https://ubuntu.com/server/docs/samba-file-server
af://n3218

 Save and exit smb.conf file.

3. Create a directory for the mountpoint (could be created in /mnt): sudo mkdir -p
/srv/samba/share

On a Windows machine
1. Run appwiz.cpl , and enable the SMB protocol.
2. Type the IP address of Samba server in the bar at the top.
3. smb://192.168.1.131

On a macOS machine
1. Assuming the services are functioning as expected, the ID for your Samba server should

appear under the word "Shared" in the sidebar to the left whenever you open Finder.
2. You might have to type smb://192.168.1.131 in the bar at the top.

Using WINE
WINE stands for "WINE IS NOT AN EMULATOR". It allows you to run Windows applications on a
Linux platform. As the name suggests, it is not an emulator. I think of WINE as a sort of translator,
designed to port (adapt) Windows application binary interfaces (ABIs) to Linux ABIs.From what I
understand, ABIs are pretty much only relevant as far as software developers are concerned. End
users, by contrast, utilize application programming interfaces (APIs) in order to retrieve data from
a server.

Preliminary Steps for installing WINE versions 5.0 &
6.0 (source:https://wiki.winehq.org/Ubuntu)

1. sudo dpkg --add-architecture i386
2. sudo apt update
3. sudo apt install wine64 wine32
4. wine --version

Procedure for installing WINE version 6.0 (sources:h
ttps://wiki.winehq.org/Ubuntu and

[share]
comment = Ubuntu File Server Share
path = /srv/samba/share
browsable = yes
writable = yes
guest ok = yes
create mask = 0777 # 0777 (octal) == binary 0b 111 111 111 ==
permissions rwxrwxrwx (== decimal 511)
force user = <insert your user here>

4. Change the ownership permissions: `sudo chown nobody:nogroup
/srv/samba/share/`
5. Restart the samba services to enable the new configuration: `sudo
systemctl restart smbd.service nmbd.service`
6. `sudo mount -t cifs //192.168.1.131/shared_directory /srv/samba/share/`

af://n3237
af://n3245
af://n3251
https://wiki.winehq.org/Ubuntu
af://n3253
https://wiki.winehq.org/Ubuntu
af://n3263
https://linuxhint.com/install-winehq-on-ubuntu-20-04/
af://n3264

https://linuxhint.com/install-winehq-on-ubuntu-20-
04/)

1. wget -nc https://dl.winehq.org/wine-builds/winehq.key

2. sudo apt-key add winehq.key

3. hostnamectl | grep Operating

4. (May not even be necessary, but might be): sudo apt install software-properties-common

5. sudo apt-add-repository 'deb https://dl.winehq.org/wine-builds/ubuntu/ impish
main'

6. sudo apt update

7. sudo apt install --install-recommends winehq-stable

8. wine --version

9. winecfg

10. Install the wine-mono package and Gecko.

11. wget https://github.com/notepad-plus-plus/notepad-plus-
plus/releases/download/v7.8.8/npp.7.8.8.Installer.exe

12. wine npp.7.8.8.Installer.exe

13. After selecting a language and clicking “OK“, the “Notepad ++” installer will appear. To
continue, click “Next”.

14. Choose the location where you want to save this file; click “Next” to continue.

15. Click “Install”.

16. Once the installation is completed, Hit “Finish”.

17. To launch the “Notepad++”, type “notepad++” in the applications search bar, or type cd
~/.wine/drive_c/'Program Files'/Notepad++;wine notepad++.exe to change to the
installation directory at the command line and open Notepad++ from the command line.

18. Alternatively, you can open “notepad++” by using the command line. wine notepad++

19. A preloaded file will open.

20. Notepad has successfully been installed on the Linux system.

21. Using the “purge” command, you can remove the “wineHQ” application and all of its
packages from your system:

sudo apt purge winehq-stable

22. “WineHQ” has been removed from your system.

Cory's Favorite Terminal Color Scheme

https://linuxhint.com/install-winehq-on-ubuntu-20-04/
af://n3264
af://n3311

 Bright neon colors are easier for me to see.

I used Hex codes from this website: (https://www.fashiontrendsetter.com/content/color_trends/c
olor-decoder/Color-Code-Neon.html)

Desktop Environments & Window Managers
Typically, a desktop environment (DE) runs in the X Window System (aka X11 or just X). X was
developed by X.Org, a non-profit foundation chartered to research, develop, support, organize,
administrate, standardize, promote, and defend a free and open accelerated graphics stack. This
includes, but is not limited to, the following projects: DRM, Mesa 3D, Wayland and the X Window
System (in the implementation of the X.Org Server).

A window manager provides decorative and functional borders around X windows. When you
resize or drag a window, it's the window manager that you're using. Most window managers also
control the root window--that is, the screen as a whole. If you right-click the desktop's
background, chances are you'll see a menu pop up; that's a window manager tool. Common
window managers include dwm, fvwm, tvwm, IceWM, Blackbox, and Metacity.

Some minimalist Linux users run a window manager in their X sessions but little else, aside from
whatever programs they actively us. Most users, though, run a desktop environment atop the
window manager. This is a set of software tools that facilitates launching programs, adjusting user
interface settings, and so on. Desktop environments also typically include a file manager, which
provides drag-and-drop file manipulation. The most popular Linux desktop environments are the
GNU Network Object Model Environment (GNOME), the K Desktop Environment (KDE), and Xfce.

Programs that I've Installed on Linux
machines (successfully or not)

Vim
snapd
Kdenlive
graphicsmagick-imagemagick-compat

LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=
40;33;01:or=40;31;01:mi=00:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:
ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:
.lz4=01;31:.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01
;31:*.zip=01;31:*.z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;3
1:*.xz=01;31:*.zst=01;31:*.tzst=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=0
1;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar
=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.
rz=01;31:*.cab=01;31:*.wim=01;31:*.swm=01;31:*.dwm=01;31:*.esd=01;31:*.jpg=01;35:
.jpeg=01;35:.mjpg=01;35:*.mjpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm
=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*
.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;
35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.webp=01;35:*.ogm=01;35:*.m
p4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:
.asf=01;35:.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;
35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01
;35:*.ogv=01;35:*.ogx=01;35:*.aac=00;36:*.au=00;36:*.flac=00;36:*.m4a=00;36:*.mid
=00;36:*.midi=00;36:*.mka=00;36:*.mp3=00;36:*.mpc=00;36:*.ogg=00;36:*.ra=00;36:*.
wav=00;36:*.oga=00;36:*.opus=00;36:*.spx=00;36:*.xspf=00;36:

https://www.fashiontrendsetter.com/content/color_trends/color-decoder/Color-Code-Neon.html
af://n3316
af://n3321

GNU Privacy Guard (gpg)
Virtualbox
Samba
pavucontrol pulseaudio-module-gconf pulseaudio-module-zeroconf
cifs-utils
network-manager
network-scripts
ifupdown
wpa_supplicant
iwd
build-essential wget unzip openssl libssl-dev libgd2-xpm-dev xinetd apache2 php\apache2-
utils apache2-mod-php7.0 php-gd
policycoreutils
remarkable
perl-doc
printf
wmctrl
htop
net-tools
SpeechRecognition pydub (using pip3)
python3-pip
simple-scan
youtube-dl
traceroute
git
haskell-stack
curl
cabal
graphviz
erd
nix-build
software-properties-common
vlc
kodi
pdfshuffler
pdftk
ffmpeg
wine
wine-stable winehq-stable
wine64 wine32
--install-recommends winehq-stable
smbclient
vokoscreenNG
pandoc
screenfetch
inxi
lsscsi

Builtin Commands That Are Symbols

af://n3423

The Bourne Again Shell uses the symbols (,), [,], and $ in a variety of ways.

I/O Streams & Redirection
Streams are just that: streams. In the same way that a river has a stream of water, programs
have streams of data. Moreover, just like you can use steel pipes to carry water from one
place to another, you can use UNIX pipes to carry data from one program to another. This
was the very analogy that inspired the design of streams:

We should have some ways of connecting programs like a garden hose — screw in another
segment when it becomes necessary to massage data in another way. This is the way of I/O
also. — Douglas McIlroy

Streams can be used to pass data into programs and to get data out of them.

In UNIX, programs get some streams attached to them by default, both for input and output. We
call these standard streams.

There are three different standard streams:

stdin or standard input is the stream which feeds your program with data
stdout or standard output is the stream your program writes its main output to
stderr or standard error is the stream your program writes its error messages to

We use pipes for connecting the output stream of a program to the input stream of
another.

You can see the output of cowsay in your screen because, by default, your terminal gets the
stdin , stdout and stderr standard streams attached to it.

af://n3425
https://linux.die.net/man/3/stdin
https://linux.die.net/man/3/stdout
https://linux.die.net/man/3/stderr

Data goes in through stdout and stderr and goes out in the other end: your monitor. Similarly,
your keyboard input goes through stdin to a program.

Source: Wikipedia

The cat program, for example, uses the stdin to receive input from your keyboard and the
stdout to send it out:

We can make it more elaborate by using sed to replace all occurrences of I by We every time we
press Enter :

$ cat
Everything I write before pressing Enter
Everything I write before pressing Enter
Gets logged right after
Gets logged right after

$ cat | sed -E "s/I/We/"
I think streams are quite cool.
We think streams are quite cool.

https://en.wikipedia.org/wiki/Standard_streams
https://linux.die.net/man/1/sed

Also, in case you didn’t know, sed stands for stream editor .

Terminal emulators are software simulations of “real” terminals. These emulators provide
you with an interface to interact with the Linux TTY driver. The TTY driver is responsible for
handling the data to and from programs.

.

Each TTY has its own stdin , stdout , and stderr streams connected to it. These are the
streams provided to programs for them to read from (stdin) and write to (stdout and stderr).

Here is a more accurate version of what happened when you ran cat | sed -E "s/I/We/" in the
last example:

Like everything in UNIX, the tty is a file. Each instance of a terminal emulator has a different tty
file associated with it. Because each emulator reads from and writes to a different file, you don’t
see the output of the programs you run in all the windows you have open.

To find out which tty is associated with a terminal window you can use the tty command.

Pipes and redirects allow output to be either piped to another command or redirected to a file.

|

Pipe output from one command to another
ls | tee peanuts.txt

lists contents and sends contents to a file. (like 'T' shaped splitter in plumbing)
2>&1 or &>

Redirect error to destination file.

https://en.wikipedia.org/wiki/Everything_is_a_file

For the supposedly "non-existent" entries, you could use:

This supposedly works in all POSIX shells.

Filters
One kind of program frequently used in pipelines is called a filter. Filters take standard input and
perform an operation upon it and send the results to standard output. In this way, they can be
combined to process information in powerful ways. Here are some of the common programs that
can act as filters:

{ ⟨command⟩ 2>&1 >&3 | tee ⟨filename⟩ >&2; } 3>&1

af://n3481

Program What it does

sort Sorts standard input then outputs the sorted result on standard output.

uniq
Given a sorted stream of data from standard input, it removes duplicate lines
of data (i.e., it makes sure that every line is unique).

grep
Examines each line of data it receives from standard input and outputs every
line that contains a specified pattern of characters.

fmt
Reads text from standard input, then outputs formatted text on standard
output.

pr
Takes text input from standard input and splits the data into pages with page
breaks, headers and footers in preparation for printing.

head Outputs the first few lines of its input. Useful for getting the header of a file.

tail
Outputs the last few lines of its input. Useful for things like getting the most
recent entries from a log file.

tr

Translates characters. Can be used to perform tasks such as upper/lowercase
conversions or changing line termination characters from one type to another
(for example, converting DOS text files into Unix style text files).

sed Stream editor. Can perform more sophisticated text translations than tr .

awk
An entire programming language designed for constructing filters. Extremely
powerful.

System Administration
UNIX Job Control
The following are part of bash, not separate utils, so there's no man page for them. They are
documented in man bash.

cmd &

Start a program in background. For example, ruby process_log.rb &

Ctrl + C

Stop the current program associated with your terminal. (sending SIGINT to it)
Ctrl + Z

Suspend the current program associated with your terminal. (sending SIGTSTP to it)
jobs

List background processes
bg %number

Run the suspended command in background.
fg %number

Resume a background process in foreground.
disown %number

Separate a job ID number from jobs table.

af://n3518
af://n3519

A UNIX process signal is an integer sent to a program to tell it something. To see a list of all
signals, type man kill .

1. Start xclock with a second hand by xclock -update 1 , it'll hog the terminal.

2. Now, in terminal, press Ctrl + z to pause the program and returns you the prompt.
(when the program is paused, it can't be used. You'll see that the second-hand stopped
moving.)

3. Type jobs to list all jobs and their ID in job table. Here's a sample output:

[1]+ Stopped xclock -update 1

4. Type bg %1 to start the process with job ID 1 in background.

5. Now, it is as if you started xclock by xclock & .

The “xclock” example above can be any shell command.

Here's some other commands that are very useful. Note, many GUI apps these days will detach
itself from terminal, even if you didn't start it with & .

setsid <command>

Run a program in a new session.
nohup <command>

Run a command immune to SIGHUP signal , and redirect stdout to a normal file.

Closing Terminal Kills My Program?
Tips:

Don't close your terminal by clicking the window close. Close it by Ctrl+d. Because, when you
click on close, it may kill all programs you launched from it.
if you do emacs & , then close your GUI terminal (by clicking on the close button), it'll also
take down your emacs.
You can use setsid emacs to launch program. It runs the program in its own session.

To run a server, you can do: nohup myserver > out.txt 2> err.txt < /dev/null & .

This will set stdout to out.txt, and stderr to err.txt, and stdin from /dev/null , and not receive
signal SIGHUP signal, and remove this process from jobs table.

Processes
A process like we said before is a running program on the system, more precisely it's the system
allocating memory, CPU, I/O to make the program run. A process is an instance of a running
program.

The kernel is in charge of processes, when we run a program the kernel loads up the code of the
program in memory, determines and allocates resources and then keeps tabs on each process, it
knows:

The status of the process
The resources the process is using and receives
The process owner
Signal handling (more on that later)
And basically everything else

af://n3583
af://n3595

All processes are trying to get a taste of that sweet resource pie, it's the kernel's job to make sure
that processes get the right amount of resources depending on process demands. When a
process ends, the resources it used are now freed up for other processes.

When a new process is created, an existing process basically clones itself using something called
the fork system call (system calls will be discussed very far into the future). The fork system call
creates a mostly identical child process, this child process takes on a new process ID (PID) and the
original process becomes its parent process and has something called a parent process ID PPID.
Afterwards, the child process can either continue to use the same program its parent was using
before or more often use the execve system call to launch up a new program. This system call
destroys the memory management that the kernel put into place for that process and sets up
new ones for the new program.

We can see this in action:

The l option gives us a "long format" or even more detailed view of our running processes. You'll
see a column labelled PPID, this is the parent ID. Now look at your terminal, you'll see a process
running that is your shell, so on my system I have a process running bash. Now remember when
you ran the ps l command, you were running it from the process that was running bash. Now
you'll see that the PID of the bash shell is the PPID of the ps l command.

So if every process has to have a parent and they are just forks of each other,
there must be a mother of all processes right? You are correct, when the system boots up, the
kernel creates a process called init, it has a PID of 1.
The init process can't be terminated unless the system shuts down. It runs with root privileges
and runs many processes that keep the system running.
We will take a closer look at init in the system bootup course, for now just know it is the process
that spawns all other processes.

A process can exit using the _exit system call, this will free up the resources that process was
using for reallocation.
So when a process is ready to terminate, it lets the kernel know why it's terminating with
something called a termination status.
Most commonly a status of 0 means that the process succeeded. However, that's not enough to
completely terminate a process.
The parent process has to acknowledge the termination of the child process by using the wait
system call and what this does
is it checks the termination status of the child process. I know it's gruesome to think about, but
the wait call is a necessity,
after all what parent wouldn't want to know how their child died?

There is another way to terminate a process and that involves using signals, which we will discuss
soon.

Orphan Processes
When a parent process dies before a child process, the kernel knows that it's not going to get a
wait call,
so instead it makes these processes "orphans" and puts them under the care of init (remember
mother of all processes).
Init will eventually perform the wait system call for these orphans so they can die.

$ ps l

af://n3617
af://n3619

Zombie Processes
What happens when a child terminates and the parent process hasn't called wait yet? We still
want to be able to see how a child process terminated, so even though the child process finished,
the kernel turns the child process into a zombie process. The resources the child process used are
still freed up for other processes, however there is still an entry in the process table for this
zombie. Zombie processes also cannot be killed, since they are technically "dead", so you can't
use signals to kill them. Eventually if the parent process calls the wait system call, the zombie will
disappear, this is known as "reaping". If the parent doesn't perform a wait call, init will adopt the
zombie and automatically perform wait and remove the zombie. It can be a bad thing to have too
many zombie processes, since they take up space on the process table, if it fills up it will prevent
other processes from running.

A signal is a notification to a process that something has happened.

Why we have signals
They are software interrupts and they have lots of uses:

A user can type one of the special terminal characters (Ctrl-C) or (Ctrl-Z) to kill, interrupt or
suspend processes
Hardware issues can occur and the kernel wants to notify the process
Software issues can occur and the kernel wants to notify the process
They are basically ways processes can communicate

Signal process
When a signal is generated by some event, it's then delivered to a process, it's considered in a
pending state until it's delivered.
When the process is ran, the signal will be delivered. However, processes have signal masks and
they can set signal delivery to be blocked if specified.

When a signal is delivered, a process can do a multitude of things:

Ignore the signal
"Catch" the signal and perform a specific handler routine
Process can be terminated, as opposed to the normal exit system call
Block the signal, depending on the signal mask

Common signals
Each signal is defined by integers with symbolic names that are in the form of SIGxxx. Some of the
most common signals are:

SIGHUP or HUP or 1: Hangup

SIGINT or INT or 2: Interrupt

SIGKILL or KILL or 9: Kill

SIGSEGV or SEGV or 11: Segmentation fault

SIGTERM or TERM or 15: Software termination

SIGSTOP or STOP : Stop

Numbers can vary with signals so they are usually referred to by their names.

af://n3619
af://n3622
af://n3633
af://n3645

Some signals are unblockable, one example is the SIGKILL signal. The KILL signal destroys the
process.

You can send signals that terminate processes, such a command is aptly named the kill
command.

The 12445 is the PID of the process you want to kill. By default it sends a TERM signal. The
SIGTERM signal is sent to a process to request its termination by allowing it to cleanly release its
resources and saving its state.

You can also specify a signal with the kill command:

This will run the SIGKILL signal and kill the process.

Differences between SIGHUP, SIGINT, SIGTERM,
SIGKILL, SIGSTOP?

These signals all sound reasonably similar, but they do have their differences.

`SIGHUP - Hangup, sent to a process when the controlling terminal is closed. For example, if
you closed a terminal window that had a process running in it, you would get a SIGHUP
signal. So basically you've been hung up on
SIGINT - Is an interrupt signal, so you can use Ctrl-C and the system will try to gracefully kill
the process
SIGTERM - Kill the process, but allow it to do some cleanup first
SIGKILL - Kill the process, kill it with fire, doesn't do any cleanup
SIGSTOP - Stop/suspend a process

When you run multiple things on your computer, like perhaps Chrome, Microsoft Word or
Photoshop at the same time, it may seem like these processes are running at the same time, but
that isn't quite true.

Processes use the CPU for a small amount of time called a time slice. Then they pause for
milliseconds and another process gets a little time slice. By default, process scheduling happens
in this round-robin fashion. Every process gets enough time slices until it's finished processing.
The kernel handles all of these switching of processes and it does a pretty good job at it most of
the time.

Processes aren't able to decide when and how long they get CPU time, if all processes behaved
normally they would each (roughly) get an equal amount of CPU time. However, there is a way to
influence the kernel's process scheduling algorithm with a nice value. Niceness is a pretty weird
name, but what it means is that processes have a number to determine their priority for the CPU.
A high number means the process is nice and has a lower priority for the CPU and a low or
negative number means the process is not very nice and it wants to get as much of the CPU as
possible.

One Big Family

$ kill 12445

$ kill -9 12445

af://n3668
af://n3684

Processes are never isolated and are always in good company. In fact, they are in a hierarchical
structure, with process number 1, init at the top. On most distributions, init has been replaced by
systemd, and /sbin/init is a symlink. This is the first process that Linux launches after booting.
All other processes share this common "ancestor" - systemd starts the operating system's basic
programs. Entering ps f presents you with a tree view of processes in the form of an ASCII
image. As an alternative, you can run the pstree program, which also gives you a useful overview
of the relationships between "parent" and "child" processes. This tree structure shows you at a
glance who is descended from whom.

The pstree tool gives you more detailed output if you set the -a flag. This tells pstree to show
you the parameters with which the programs are running. If you use a terminal that supports
different fonts and bold type, such as Gnome Terminal or KDE's Konsole, you might also want to
try the -h parameter. This tells pstree to highlight its own process and its ancestors. If you want
to use this practical feature for other processes, use -H with the process ID, and pstree will
highlight the specified process and its family tree. Setting the -p option tells pstree to output the
process ID (PID), and -u shows the user. All of these parameters can be combined - for example,
pstree -apuh .

Top Tool!
If you are looking for CPU hogs, ps is not your best option. Because it simply gives you a
snapshot of the current status, you will not find out too much about the current system load.
However, Linux has the top tool to help you with this task. Top is a process monitor that updates
the display to give you the current status. You can launch the monitor by typing top at the
command line.

This program gives you extensive information about your system and the processes running on it.
The top line shows the time, the computer uptime, the number of processes, and the status
details, along with the CPU, memory, and swap load. To find out more about used and unused
memory and swap space, you can also use free or uptime .

The top status line contains information on the individual processes. The columns of the status
line present various categories:

process ID (PID)
username (USER)
Priority (PR)
nice level (NI)
memory usage as a percentage (%MEM)
parent process ID (PPID)
user ID (UID)
CPU time consumed as a percentage (%CPU)
command name (COMMAND)

You also can tell top what you want to see; just press F and the relevant letters to specify the
status line content. Several commands allow you to control top interactively; for example, you can
press H to display the online help. Entering U followed by a username gives you the
processes for that user. Shift + R reverts the output, showing the most frugal processes
instead of the CPU hogs, and entering Q quits the tool and takes you back to the shell. Shift
+ Z lets you add color. The W key toggles through several predefined color schemes, but you
can also press the appropriate letters and numbers to define your own color scheme.

Mister Nice Guy

af://n3687
af://n3711

Processes have a specific priority, which becomes useful if you have a program running in the
background and do not want to risk losing control over the system load. To start a program with a
specific priority, use the nice command. Non-privileged users may only assign lower priorities to
their own tasks - assigning higher priorities is the administrator's domain.

Processes have a nice value of 0 by default; if you run the command without parameters, the
program will confirm:

With the nice command, you can also assign a specific priority, where **-20 is the highest and 19
is the lowest priority. To set the level for the process monitor top, for example, you would type:

If you skip the -n option and the nice level, nice sets the level to 10. As mentioned before,
regular users are only allowed to use positive increments:

To discover a program's nice level, use the top (under column NI in the status bar) or ps
command. In the ps output in Listing 3, the top call has been "niced," as indicated by the capital
N in the STAT column.

To change the priorities of programs that are already running, use the renice command. Regular
users manipulate only their own tasks; only the root user can renice every program. To change
a priority, find out the program's PID, then use renice plus the -n parameter and the value:

More Information About Memory
Two more command-line tools provide information on your system's memory. The free
command is typically used without any parameters and shows the total amount of free and used
physical and swap memory in the system, as well as the buffers used by the kernel. The default
setting is kilobytes; to display megabytes or gigabytes, use the -m or -g switch. It's also possible
to add a fourth line of data containing the totals for physical memory and swap space. To do so,
use the -t option. To find out more about your system's load averages, you can use the uptime
tool. As the name suggests, this command is mainly used to show how long the system has been
running. The output additionally displays the current time, the uptime, how many users are
currently logged on, and the system's load averages for the past 1, 5, and 15 minutes.

Uptime Load Averages

$ nice
0

nice -n 19 top

$ nice -n -19 top
nice: cannot set niceness:
 Permission denied

$ renice -n 10 2342
2342 (process ID) old priority 19, new priority 10

$ uptime
17:49:04 up 30 min, 2 users, load average: 0.00, 0.01, 0.08

af://n3723
af://n3726

To understand the load average numbers, you need to know how many CPUs (or how many CPU
cores) your system has.

For a system with one CPU, a load average greater than 1.00 means the CPU is overloaded by
whatever percentage for that period of time (1 minute, 5 minutes, or 15 minutes, respectively).
But if the load average is less than 1.00 for that same system, it means that the CPU was idle by
whatever percentage for that time period.

Cron and At keep your tasks on task
The Linux environment includes a number of utilities that allow you to schedule tasks. Two classic
Bash scheduling tools are the At program, which lets you schedule tasks right now, and Cron,
which handles recurring jobs. A daemon runs in the background to ensure the tasks are
performed according to the schedule and checks for new jobs once a minute. The daemon for At
is named atd, and the cron daemon is called cron(d).

Systemd has introduced a new method for scheduling tasks in Linux: a Systemd timer. Like many
features of the Systemd landscape, timers are relatively new, and many users still prefer to
schedule tasks the old way. This article focuses on the classic Cron and At tools.

At Your Service
To perform a job, call at with the time at the command line, type commands in the shell, and
quit by pressing Ctrl + D :

This tells the ogg123 command-line player to wake you on the dot at 7am by playing a random
selection of songs in shuffle mode from the /home/huhn/music/ directory - of course, this
assumes your computer is switched on.

Table 1 gives an overview of the most common notations for time. Note that at is persistant: that
is, it will keep running after you reboot your machine.

After completing a task, At sends email with the job status to the job owner as to whether the job
completed successfully or not. Therefore, you need a working mail server configuration (at least
for local deliveries). For commands that do not create output by default (e.g., rm , mv , or cp), you
can enforce an email message. To do so, set the -m flag, as in at -m 13:31 .

Displaying and Deleting Jobs
Scheduled At commands are stored in the queue, and you can display the queue onscreen by
calling at -l or atq :

$ at 07:00
warning: commands will be executing using /bin/sh
at> ogg123 -zZ /home/huhn/music/*
at> <EOT>
job 1 at Tue Nov 10 07:00:00 2009

$ atq
2 Tue Nov 9 16:22:00 2010 a huhn
3 Tue Nov 10 17:08:00 2009 a huhn
4 Tue Nov 10 17:10:00 2009 a huhn

af://n3729
af://n3732
af://n3738

 Unfortunately, at is not very talkative; it just tells you the job number, date and time, queue
name (a), and username. The list does not tell you what jobs are scheduled. Additionally, you only
get to see your own jobs as a normal user; only the system administrator gets to see a full list of
scheduled jobs.

If you want more details on what the future holds, become root and change to the At job directory
below /var/spool , for example /var/spool/atjobs (for openSUSE) or
/var/spool/cron/atjobs/ (for Debian and Ubuntu). The text files tell you exactly what
commands will be run. Here you can also learn the user and group IDs (see the "Users and
Groups" article) and the username of the one who started the at command.

To delete an At job, enter at -d or atrm , specifying the job number:

Access Privileges
Two files, /etc/at.allow and /etc/at.deny , control who is permitted to work with At. Most
distributions tend just to have an at.deny file with a few "pseudo-user" entries for lp (the printer
daemon) or mail (for the mail daemon). If you create at at.allow file as root, you need entries for
all users who are permitted to run At jobs - at.deny is not parsed in this case.

Users who are not listed in at.allow therefore receive the message You do not have permission
to use at.

A cron (command run on (UNIX) scheduler) for All
Seasons

If you are looking for a way to handle regularly recurring tasks, repeatedly running At is not
recommended. Instead you should investigate the other option that Linux gives you. Cron also
runs in the background and runs jobs at regular intervals. Again, the cron program just needs
the machine to be up because it "remembers" scheduled jobs when you reboot your machine. In
fact, the two programs have even more in common: just like at , cron mails the owner account
to confirm that a job has completed successfully. (Remember that this requires a working mail
server and at least local delivery.)

Individual tasks are referred to as cronjobs, and they are managed in the crontab. This is a table
with six columns that defines when a specific job is to be performed. Each command in the
crontab occupies a single line. The first five fields describe the time, whereas the sixth field
contains the program to be run, including any parameters.

As a normal user, you can create a crontab at the command line by running the crontab program
with crontab -e , where the parameter -e parameter indicates that you will be editing the table.

As the system administrator, you can additionally modify the crontabs of any user by specifying
the -u parameter and supplying the account name:

Usually, this calls the Vi editor - if you prefer a different text editor, just set your $EDITOR
environment variable to reflect this, as in:

$ atrm 2 3
$ atq
4 Tue Nov 10 17:10:00 2009 a huhn

crontab -u huhn -e

af://n3745
af://n3748

Format Meaning

16:16 16:16 hours today (or the next day, if it is past that time)

07:00pm 19:00 hours today (if you do not specify am or pm, am is assumed).

now Right now

tomorrow Tomorrow

today Today

now + 10min
In 10 minutes time; you can also specify hours, days, weeks, and
months.

noon

tomorrow
At 12:00pm the next day; also, teatime (=4:00pm) or midnight.

6/9/10 June 9, 2010; or, for example, 6.9.10 and 6910.

To make this change permanent, add this line to your Bash configuration file, and reparse the
configuration file by entering source ~/.bashrc .

Well Structured
Crontab lines are not allowed to contain line breaks. Six fields contain the following information in
this order:

(1) minutes (0 to 59 and the * wildcard)
(2) hour (0 to 23 or *)
(3) day (1 to 31 or *)
(4) month (1 to 12, Jan to Dec, jan to dec, or *)
(5) weekday (0 to 7, where both 0 and 7 mean Sunday, Sun to Sat, sun to sat, or *)
(6) (the command to run, including options; also, this can be the name of a script with more
commands)

Table 1: at Time Formats

If you want your computer to wake you at 7am every morning, enter:

The values in the individual fields can be separated by commas: To keep your alarm from ringing
on Saturdays and Sundays, add this to the fifth weekday field:

 A combination of times can also be useful. You can specify a range with a dash (1-5), but weekday
names are easier to read:

export EDITOR=/usr/bin/gedit

0 7 * * * ogg123 -zZ /home/huhn/music/*

0 7 * * 1,2,3,4,5 ogg123 -Zz /home/huhn/music/*

0 7 * 1-4,7,10-12 mon-fri ...

af://n3757
af://n3772

INFO

[1] Browser-based Cronjob Monitor: https://crontab.guru/

The values 1-4, 7, 10-12 in the fourth field (month) means "January to April, July, October to
December." A slash followed by a number defines regular periods of time (e.g., */2 in the second
column = "every two hours" and 1-6/2 = "1,3,5").

User cron tables are stored in the /var directory, but distros take different approaches when
sorting the tables: Debian and Ubuntu store them in /var/spool/cron/crontabs/ and sort by
username; openSUSE uses /var/spool/cron/tabs/ . As a normal user, you do not have read
permission, but you can display your cron table by running the crontab program:

To delete individual entries, launch the editor with crontab -e ; if you intend to delete the whole
table, run crontab -r instead.

Global cron Tables
Cron not only handles user-specific lists, it helps the root user with administration tasks. Working
as root, look at the /etc/crontab file, which shows which jobs cron handles. Depending on the
distribution, the global crontab can vary; Debian and Ubuntu have the entries shown in Listing 1.

Listing 1: Ubuntu and Debian crontab Entries

In contrast to normal user crontabs, the global crontab has a seventh field with the name of the
user and the privileges for whom the command will run (typically root). This list tells you that the
cron daemon runs run-parts --report /etc/cron.hourly with root privileges once an hour at
17 minutes past the hour, and at 6:52am on the first day of each month, cron runs run-parts --
report /etc/cron/monthly . Cron takes care of the daily chores (the executable scripts in
/etc/cron.daily) at 6:25am, including the logrotate script, which rotates, compresses, and
sorts logfiles.

If you do not run your computer 24/7, modify these entries and specify times when you know
your computer will be up:

Cron Alternatives

$ crontab -l
10 8 * * mon-fri ogg123 -Zz /home/huhn/music/*

m h dom mon dow user command
 17 * * * * root cd / && run-parts --report /etc/cron.hourly
 25 6 * * * root test -x /usr/sbin/anacron || (cd / && run-parts --
report /etc/cron.daily)
 47 6 * * 7 root test -x /usr/sbin/anacron || (cd / && run-parts --
report /etc/cron.weekly)
 52 6 1 * * root test -x /usr/sbin/anacron || (cd / && run-parts --
report /etc/cron.monthly)

25 17 * * * root
 test -x /usr/sbin/anacron || (cd / && run-parts --report /etc/cron.daily)

https://crontab.guru/
af://n3816
af://n3818
af://n3823

Man Page Sections

Section Description

1 General commands

2 System calls

3 C library functions

4 Special files (usually devices found in /dev) and drivers

5 File formats and conventions

6 Games and screensavers

7 Miscellanea

8 System administration commands and daemons

Several GUI-based tools will help you create a cron table. Gnome users have Gnome Schedule
(package gnome-schedule), an easy-to-use program that lets you put together at and cron tasks
with a few mouse clicks. The KDE tool is KCron (*System Settings | Startup and Shutdown | Task
Scheduler.). KCron lets you modify the system-wide crontab, as well as cron and At schedules for
certain user accounts.

In the end (and as in most cases), the command line gives you much more flexibility, and you can
type entries much faster than if you were to click and point.

Alternatives such as Anacron and Fcron are available online or through your distro's package
manager. Some of these tools provide enhanced scheduling features and even offer a way to
"catch up" by executing tasks that were scheduled to run when the system was turned off.

Restrictive Bash
rbash or bash -r
exit restrictive bash with Ctrl + D

Documentation
The most basic form of help is the man page. Man pages are divided into eight sections, but most
of the time, you only need to type the command man followed by the command, file, or concept
about which you want information.

However, some topics have entries in several sections. To go to a specific section, place the
number of the section between the man command and the topic. Thus, man man takes you to
the basic page about the man command in section 1, but man 7 man takes you to a section
about the collection of macros used to create man pages. Either way, when you are finished
reading, you can press Ctrl+Z followed by Ctrl+C to return to the command line.

When you are doing deeper research, consider using apropos followed by a topic to receive a list
of all the applicable man pages. The one drawback to apropos is that, unless you are very
specific, you could get dozens of pages, only a few of which are relevant to you.

By contrast, if all you need is a brief snippet of information, use whatis followed by the
command. For example, if you enter whatis fdisk, you receive the line fdisk (8) -- Partition table
manipulator for Linux. The (8) refers to the man section where detailed information is available.
Similarly, if you need to identify a file type, use type, then the file. Additionally, the GNU Project

INFO

[1] Bash Reference Manual: http://www.gnu.org/software/bash/manual/bashref.html

made info its official help format. But, instead of replacing man, info has simply become an
alternative.

Another important reference is the online Bash Reference Manual.

Cal, date, hwclock, and NTP
An incorrectly set PC clock can be disastrous - if your computer loses track of the time, you could
end up juggling files from the future or emails from 30 years ago. The time warp could lead to
misunderstandings, errors, or even crashes.

Almost all Linux distributions set the time and time zones during the installation phase, and
desktop environments such as KDE and Gnome display a clock in the panel to give users quick
access to tools for configuring the computer clock.

In the shell, cal displays a simple but neatly formatted calendar. The date command gives you the
date and time, although the output itself if fairly sparse. Additionally, this program can help the
administrator set the date and time. The date tool also demonstrates its potential in combination
with other command-line tools and in scripts, for example, when programs generate file names
that contain the current date.

==The system time is maintained by the operating system, it is the one the processes will get
when querying the date/time. Being stored in RAM, reading it is a fast operation.==

==The hardware time is maintained by a real clock powered by a battery. That means this clock
persists a reboot. However, reading it implies performing a I/O operation which is more resource
intensive than reading the system clock.==

==For that reason, the hardware clock is seldom used, mainly at boot time to set the system clock
initial value, and then optionally to adjust/synchronize it either manually or through NTP.==

==Note that the hardware clock might be set to either the local time or UTC time while the system
clock is always set on Unix/Linux systems to UTC time.==

==The hwclock tool helps to synchronize the system time and the hardware clock. Of course, you
will need to be root to run this program.==

==If your machine has a permanent internet connection, you can automate the process of setting
the clock by synchronizing your own timekeeper with a server on the web via the Network Time
Protocol (NTP).==

Command-Line Calendar
If you call the calendar with cal and without parameters, the program displays the current month
of the current year; the current day is highlighted. The -3 option tells cal to show you the previous
and next months as well; the -y flag produces a year calendar.

To output a specific month, you need to pass the month to cal in the form of a two-digit number
for the month and a four-digit number for the year. By default, cal will output the calendar in the
language defined in the LANG environment variable.

http://www.gnu.org/software/bash/manual/bashref.html
af://n3870
af://n3880

If you prefer the time format for any other language, but would like to keep output from all other
programs in the default language, you can set the LC_TIME variable to tell cal to use the language
of your choice.

The following example sets the date and time output to English:

 Of course, this command isn't necessary if your default language is already English.

What's the Time?
If you type date at the command line, you will see the date, time, and also the time zone:

The date command also references the LANG variable to set the language, and it can also be
influenced by setting LC_TIME just like cal.

Date is even more flexible if you set the TZ (time zone) variable with the command:

If you happen to live in Australia and need to phone friends in New York on a regular basis, you
might want to set up an alias for the last command to make it easier to check the time before you
call.

To set up an alias, just add the following line to your Bash configuration file, *~/.bashrc

and re-parse the settings after saving them by giving the source ~/.bashrc command. Then, you
can simply type NY at the command line to output New York time.

Formatted Output
The date program has a large number of parameters that influence the output format. You can
format the date output with a plus sign, followed by a percent sign, and a letter. For example:

 Table 1 lists some of the more common options; you can refer to the man page (man date) for a
complete list of the options.

Table 1: Date Command-Line Parameters

LC_TIME=C cal -y

$ date
Tue Feb 19 15:23:41 CST 2019

$ TZ =America/New_York date
Tue Feb 19 16:27:24 EST 2019

alias NY='TZ=America/New_York date'

$ date +%Y_%m
2019_02

af://n3887
af://n3897
af://n3901

Parameter Meaning

%M Minutes (00 to 59)

%H Hours, 24-hour clock

%I Hours, 12-hour clock

%a Weekday, short form

%A Weekday, long form

%d Day as two-digit number

%b Name of month, short form

%B Name of month, long form

%m Month as two-digit number

%y Year as two-digit number

%Y Year as four-digit number

%D Four-digit date (mm/dd/yy)

%T Time in 24-hour clock

%r Time in 12-hour clock

%t Tabulator

%n Line break

%% % sign

These formatting options are particularly practical if you use date to generate file names made up
of date, time, or both values automatically.

The command

creates a Bzip2 compressed tarball with a name comprising the text string backup_, the date (that
is the day, month, and year separated by underlines), and the file extension *.tar.bz2 (for
example, backup_05_11_2009.tar.bz2).

Setting the System Time
The root user can use date to set the time and date for a machine. To do so, use the -s option
followed by a string that contains the new time (see the next section, "Everything is Relative").
Before you enter the following command, make sure that all NTP components have been
uninstalled (see the "Automated" section):

tar -cvjf backup_$(date +%d_%m_%Y).tar.bz2 *

date -s "19 Feb 2019 16:20"
date
Tue Feb 19 16:20:03 CST 2019

af://n3961

The first three parts of this are mandatory; if you leave out the year, date will just default to the
current year.

Other format options let you set the date with seconds' precision. For this information, enter man
date and study the date string examples.

Everything Is Relative
As an alternative to the absolute date and time, the date tool also understands relative values and
even has a couple of predefined strings to help you:

yesterday
tomorrow
today
now
sec(s)/second(s)
min(s)/minute(s)
hour(s)
day(s)
week(s)
fortnight
month(s)
year(s)

Additionally, date understands concepts such as ago, so you can say day ago instead of yesterday.

If you use one of these strings to set the time, you must specify the -s parameter like so:

To display a relative time, you need the -d parameter instead:

The date information page tells you more about strings and how to use them. To read the
documentation at the command line, use info coreutils date.

Setting the Hardware Clock
In addition to the software clock, your computer has another timekeeper, and this one will
continue to count down the days when your computer is switched off and even when it is not
plugged in.

date -d '+yesterday'
or
date -d '-yesterday'
^^^ both of the commands shown above display the same relative time.
when using an option to specify date(s), any non-option
argument must be a format string beginning with '+'

date -s '+3 mins'
^^^ sets the software clock 3 minutes forward in time

date -d '+5 days -2 hours'
Mon Nov 29 11:02:47 AM CST 2021
^^^ displays time relative to the current time (5 days in the future, 2 hours
prior to the current time)

af://n3966
af://n4000

To ensure uninterrupted timekeeping, computer mainboards have a battery-buffered clock,
referred to as the CMOS clock, RTC (Real-Time Clock), BIOS clock, or even hardware clock.

The hwclock program lets you read and set the hardware clock; the commands all require root
privileges. When used in combination with the -r option, you can display the local hardware time:

Additionally, hwclock has options for setting the system time to reflect the hardware clock time
(hwclock -s) or vise versa (hwclock -w).

A combination of --set and --date sets a specific time. You need to enter a string to describe the
new date and time after the --date parameter. The format is exactly the same as the date
program's -s option. The command

sets the hardware clock to a time two hours in the future.

The Hardware Clock's Verbose Output
time sudo hwclock --verbose

hwclock -r
2019-02-19 15:44:09.49830-0500

hwclock --set --date="+2 hours"

$ time sudo hwclock --verbose
[sudo] password for cory:
hwclock from util-linux 2.36
System Time: 1639081161.332658
Trying to open: /dev/rtc0
Using the rtc interface to the clock.
Assuming hardware clock is kept in UTC time.
Waiting for clock tick...
...got clock tick
Time read from Hardware Clock: 2021/12/09 20:19:22
Hw clock time : 2021/12/09 20:19:22 = 1639081162 seconds since 1969
Time since last adjustment is 1639081162 seconds
Calculated Hardware Clock drift is 0.000000 seconds
2021-12-09 14:19:21.343237-06:00

real 0m5.062s
user 0m0.026s
sys 0m0.000s

af://n4009

INFO

[1] http://www.unixtimestampconverter.com/

[2] https://labs.isee.biz/index.php/How_to_adjust_Hardware_RTC_clock

[3] http://manpages.ubuntu.com/manpages/jammy/en/man8/ntpd.8.html

[4] https://titanwolf.org/Network/Articles/Article?AID=1adcffb8-e870-4fe4-ba43-8d0a65f6477
7

https://support.apple.com/guide/shortcuts/technical-standards-apdfd459e13d/ios

https://datatracker.ietf.org/doc/html/rfc2822#section-4

https://en.wikipedia.org/wiki/UTC%E2%88%9206:00#/media/File:Timezones2008_UTC-6_gray.
png

https://greenwichmeantime.com/what-is-gmt/

INFO

[1] NTP: (http://en.wikipedia.org/wiki/Network_Time_Protocol)

[2] NTP: (http://manpages.ubuntu.com/manpages/jammy/en/man8/ntpd.8.html)

Automated!
Network Time Protocol (NTP) is a standard for automating the synchronization of clocks in
computer systems. The time signal propagates over the network from an NTP server to a client,
and you can configure the point in time when your Linux machine's NTP client contacts a server
on the network. This could be at boot time or when you get onto the Internet, or you could use a
manual command in the shell.

In the pre-Systemd era, most major Linux distributions had packages available for enabling NTP
support. Many of those packages still exist - see the documentation for your own Linux
distribution to learn about NTP package options.

Systemd provides a built-in systemd-timesyncd services that performs basic time synchronization
duties. To check whether the service is running on your system, enter:

The systemd-timesyncd service is like other Systemd services. You can start, stop, or restart it using
a variation of the systemctl command:

See the article on Systemd elsewhere in this issue, or consult the systemctl man page, for more on
managing Systemd services.

Secure connections with SSH

systemctl status systemd-timesyncd.service

systemctl restart systemd-timesyncd.service

http://www.unixtimestampconverter.com/
https://labs.isee.biz/index.php/How_to_adjust_Hardware_RTC_clock
http://manpages.ubuntu.com/manpages/jammy/en/man8/ntpd.8.html
https://titanwolf.org/Network/Articles/Article?AID=1adcffb8-e870-4fe4-ba43-8d0a65f64777
https://support.apple.com/guide/shortcuts/technical-standards-apdfd459e13d/ios
https://datatracker.ietf.org/doc/html/rfc2822#section-4
https://en.wikipedia.org/wiki/UTC%E2%88%9206:00#/media/File:Timezones2008_UTC-6_gray.png
https://greenwichmeantime.com/what-is-gmt/
http://en.wikipedia.org/wiki/Network_Time_Protocol
http://manpages.ubuntu.com/manpages/jammy/en/man8/ntpd.8.html
af://n4033
af://n4048

Telnet is probably the best-known solution for providing users with console access to remote
machines. However convenient this dinosaur of network communication might be, it has one
major disadvantage: All the data is sent in plaintext over the wire. If an attacker sniffs the
connection, he or she will quickly learn the administrative password for the server. Admittedly, it
probably isn't quite that easy, but the danger is there all the same. For this reason, all popular
Linux distributions install the Secure Shell (SSH) as a safer alternative.

Getting Started with SSH
First, a bit of theory. The SSH client/server architecture is based on TCP/IP. The SSH server (sshd)
runs on one machine, where it listens for incoming connections on TCP port 22. The client simply
uses this port to connect to the server. When a connection is established, several things happen
in the background. The server and client exchange information about supported protocol
versions to use for communications. Currently SSH1 and SSH2 are available, but SSH2 is standard
today because of its better security. Details - including details of encryption - are given in the "SSH
Protocol Versions" box. The server and client then negotiate the algorithm, followed by the key
that both will use for the data transfer. The key is used only once for the current communication
session, and both ends destroy it when the connection is broken. For extended sessions, the key
will change at regular intervals, with one hour being the default.

To get started with SSH, you need to install an SSH server on the target machine - and you can't
go wrong with OpenSSH, which is by far the most popular SSH software on Linux. To install the
OpenSSH server on Debian and Ubuntu, run the

command as root.

Once the installation is completed, the server is ready to go. Although it runs perfectly well with
the default configuration, you might want to change the default port 22 the server is running on.
Open sshd_config for editing using your favorite editor as root and change the Port value (e.g.,
`Port 1777). Then, restart the SSH server using the

command as root. This simple trick makes the lives of potential intruders slightly more difficult,
because many malicious port scanners check the default port 22 and move on if it's not open. Of
course, this doesn't make your server completely secure, but every bit helps.

To connect to the server via SSH, you also need to install the OpenSSH client on your machine
using apt-get install openssh-client as root. To establish an SSH connection, open the
terminal and run the ssh user@remotehost command (replace USER with the actual user name
on the server and HOST with the IP address or domain name of the server). If you changed the
default SSH port, then you need to specify the port parameter explicitly:

On first log in, the client will not know the server's host key and will prompt you to confirm that
you really do want to establish a connection with the remote machine. After confirming, the
program generates the fingerprint (Figure 1).

Figure 1: On initial login, SSH imports the host key.

apt-get install openssh-server

/etc/init.d/ssh restart

ssh -p 1777 user@remotehost

af://n4050
af://n4061

SSH Protocol Versions

SSH1 and SSH2 are the current versions. SSH1 uses the insecure DES or the secure Triple DES
(3DES). The Blowfish algorithm provides a fast and - so far - secure encryption technology.

Version 2 includes the AES algorithm and others. Vulnerabilities in the SSH1 protocol make it
possible to hack the encryption. Version 1 relies on encryption of data with a random

number that has been encrypted with the server's public key. This method is open to brute
force attacks that give the attacker the plaintext key. Protocol 2 relies on a Diffie-Hellman

exchange that never transmits the key over the wire but allows server and client to generate
the same key independently. Other enhancements to version 2 include the software's ability

to check the data integrity with cryptographic hashes (the Message Authentication Code
method) rather than the unreliable CRC (Cyclic Redundancy Check) method. Support for

multiplexing is also improved. All of the examples in this article use SSH2, although some will
work with SSH1.

To check the key fingerprint, contact the administrator of the remote machine. This prevents
man-in-the-middle attacks, in which an attacker reroutes network traffic to his own machine while
spoofing a genuine login to your machine. If you were to confirm the security prompt and enter
your password, the attacker would then own your password; thus, some caution is
recommended. If the host key changes, the client will refuse to connect when you log in later.
Figure 2 shows the output from the SSH client.

Figure 2: If the host key changes, the SSH client will
refuse to connect.

debian:~# ssh sector
The authenticity of host 'sector (192.168.10.100)' can't be established.
RSA key fingerprint is 81:00:6e:dc:49:e1:5b:1d:76:86:8c:a4:55:91:0d:29.
Are you sure you want to continue connecting (yes/no)? y
Please type 'yes' or 'no': yes
Warning: Permanently added 'sector,192.168.10.100' (RSA) to the list of known
hosts.
Password:
Last login: Tue Sep 27 14:45:53 2005 from 192.168.10.254
Loading /usr/share/keymaps/i386/qwertz/de-latin1-nodeadkeys.kmap.gz
SECTOR:~$

debian:~# ssh sector
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
81:00:6e:dc:49:e1:5b:1d:76:86:8c:a4:55:91:0d:29.
Please contact your system administrator.
Add correct host key in /root/.ssh/known_hosts to get rid of this message.
Offending key in /root/.ssh/known_hosts:1
RSA host key for sector has changed and you have requested strict checking.
Host key verification failed.
debian:~#

af://n4069

The only thing that will help is to remove the offending fingerprint from your
$HOME/.ssh/known_hosts file and accept the new key after contacting the administrator on the
remote machine. To configure this behavior, use the StrictHostKeyChecking variable in
ssh_config .

If you do not want to use your current account name to log in to the remote machine, the -l
login_name option can help. For example, the command

logs you in to the remote machine as user tuppes . SSH also accepts the syntax ssh
tuppes@sector . To run a single command on the remote machine, you simply append it to the
command line (Listing1).

Listing 1: Running Commands on the Remote
Machine

If you get tired of typing your password, public key authentication provides an alternative. This
technique uses encryption methods such as those used by GnuPG. Before you can use the public
key approach, you first need to run ssh-keygen to generate a pair of keys:

The software will tell you that it has created a keypair with a public key and private key on the
basis of the RSA approach. When prompted to enter a password, press Enter twice. The
program will then tell you where it has stored the data and will display the fingerprint for the new
key.

In the example here, the software generates an RSA keypair (-t rsa) with a length of 2048 bits (-
b 2048). For security reasons, the key length should not be less than 2048 bits. To be absolutely
safe, you can use a key length of 4096 bits. The key length has no influence on the data
transfer speed because the program does not use this key to encrypt the data.

Next, copy the public key to the $HOME/.ssh/authorized_keys on the remote machine from, for
example, a floppy disk:

Certainly you should avoid transferring the key by an insecure method, such as email or FTP.
Figure 3 shows the fairly unspectacular login with the new key.

ssh -l tuppes sector

jha@scotti:~$ ssh sector "ls -l"
Password:
insgesamt 52
Drwxr-xr-x 3 tuppes users 4096 2005-08-26 12:38 .
Drwxr-xr-x 16 root root 4096 2005-09-07 13:47 ..
-rw-rw-r-- 1 tuppes users 266 2005-04-12 12:00 .alias

ssh-keygen -b 2048 -t rsa

mount /media/floppy
cat /media/floppy/id.rsa.pub >> $HOME/.ssh/authorized_keys
umount /media/floppy

af://n4075
af://n4084

Figure 3: Public key authentication makes the login
more user friendly by removing the password
prompt.

Passwords protect keys for interactive sessions; otherwise anybody with physical access to your
computer could use your keys to log in to the remote machine. Key-based, password-free logins
are often used to automate copying of files to remote machines.

For example, if you back up your data every evening and want to copy it automatically to a remote
machine, keys without passwords are a useful approach. If the key was password protected, you
would need to enter the password for the SSH key to copy the data - so much for automated
copying.

Typing SSH commands like

ssh -p 1777 pi@192.168.101

can become a nuisance if you have to do this several times a day. Fortunately, you can solve this
problem by defining SSH aliases for often-used SSH connections in the ~/.ssh/config file:

Replace alias with the desired alias name, ipaddress with the IP address or domain name of
the server, username with the actual username, and portnumber with the appropriate port
number:

You need to specify the Port parameter only if the SSH server is running on any port other than
22.

Useful Freebies
The SSH package includes two more useful programs: Secure Copy (scp) and Secure FTP (sftp).
As the names suggest, these programs are used to copy and transfer files by FTP via SSH. The
basic syntax for the two programs is similar.

For example, to copy test.txt from your home directory on the remote machine to your current
working directory, enter:

debian:~# ssh sector
Last login: Wed Sep 28 13:36:22 2005 from 192.168.10.254
SECTOR:~$

Host alias
 HostName ipaddress
 User username
 Port portnumber

Host raspberrypi
HostName 192.168.1.101
User pi
Port 1777

scp RemoteComputer:test.txt .

af://n4084
af://n4096

Depending on your authentication method, you might need to enter your password; however, the
colon is mandatory in all cases. It separates the name of the remote machine from the pathname.
Also, you need to specify the local path. The easiest case is your current working directory, which
is represented by the dot at the end of the line. To copy multiple files, just type a blank-delimited
list of the file names:

If you use the standard login approach, the client will prompt you to enter your password for each
file you copy. If you use the public key method discussed previously, you don't need to type a
password. The command

copies the file from remote computer A to remote computer B. To copy a file as tuppes from
/home/tuppes/files to your local directory, type:

Unlike SSH, you do not specify the -l username option. Copying in the other direction - local to
remote - is just as easy:

scp copies the test.txt from your current working directory to /home/tuppes/files on the
remote machine. Again, watch out for the closing colon. The sftp tool uses the same command
structure as scp but has two operating modes: interactive, like the one you might be familar with
from FTP, and batch mode. To use sftp to retrieve the sample file from the remote machine in
batch mode, type:

If you add remote_test.txt to the end, the program will give that name the local copy of the file.
Typing sftp RemoteComputer opens an interactive, encrypted FTP session on the remote
machine, and the server will accept FTP commands such as GET or PUT in the session.

Building Tunnels
SSH also lets you encapsulate other protocols. For example, you can run the Telnet protocol over
an encrypted SSH connection and do it transparently for users. The technical term for
encapsulating one protocol inside another is "tunneling."

The standard specifies that programs must be running on the same machine to use the tunnel. If
you want other machines on the network to use the tunnel, you must specify -o
GatewayPorts=yes when setting up the tunnel. The alternative is to set the option in ssh_config .

This setup is similar to a Virtual Private Network (VPN) connection but is easier to implement. The
SSH variant has the disadvantage that you can only forward a single TCP port. Thus, you need an
SSH tunnel for each port you want to forward. If you want to encrypt all communication between
two machines, a VPN is probably a better choice.

scp RemoteComputerA:test1.txt RemoteComputerB:test2.txt .

scp RemoteComputerA:test.txt RemoteComputerB:

scp tuppes@RemoteComputer:files/test.txt .

scp ./test.txt tuppes@RemoteComputer:/files/

sftp RemoteComputer:test.txt .

af://n4111

netstat Replacement

netstat ss

netstat -r ip route

netstat -i ip -s link

netstat -g ip maddr

Any user can set up a tunnel, although tunnels for privileged ports (i.e., below 1024) are reserved
for root. To open a tunnel to a remote machine encapsulating the Telnet protocol (port 23), enter:

The command uses the -L option to open a tunnel from local port 23 on the local machine (the
first 23) to port 23 on the remote machine. The fast Blowfish method is used for encryption. If you
type two remote machine names , you can take advantage of another SSH feature: opening a
tunnel from the first machine, via the second, to a third. The command

starts the tunnel on the local machine and routes it via an intermediate station (192.168.1.1) to its
endpoint. The generic syntax for opening a tunnel from the local machine to the remote
computer is thus:

For a direct tunnel, the two host designations are identical.

Tunnel Tricks
Netstat is considered obsolete with introduction of systemd, even though it is still functional on
most distros. Replacements for the netstat commands are ss (socket statistics), which takes
many of the same options as netstat , and ip , which replaces ifconfig (see the Networking
Tools article). Table 1 shows the commands that replace common netstat commands.

Table 1: netstat Replacement Commands

ssh -c blowfish -L 23 RemoteBox:23RemoteBox

ssh -L 23:192.168.1.1:23 192.168.20.5

ssh -L LocalPort:RemoteComputerA:RemotePort RemoteComputerB

[Fri May 12 09:30 PM]$sudo netstat -tlpn
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
 PID/Program name
tcp 0 0 0.0.0:22 0.0.0.0:* LISTEN
 501/sshd
tcp 0 0 127.0.0.1:6010 0.0.0.0:* LISTEN
 868/0
tcp6 0 0 :::22 :::* LISTEN
 501/sshd
tcp6 0 0 ::1:6010 :::* LISTEN
 868/0
[Fri May 12 09:33 PM]$
[Fri May 12 09:33 PM]$sudo ss -tlpn | cat

af://n4122
af://n4124

In Figure 4, the netstat and ss commands demonstrate that a Telnet connection has been set
up via SSH. The first set of commands (netstat and ss) shows that an SSH process with an ID of
501 is listening on port 22. The second set of commands show that a connection to port 22 is
established.

If you were to look more closely at the syntax used to open a tunnel, you might be led to assume
that the local and remote ports do not need to be identical - and this is true. Assuming the remote
machine is running a proxy configured for transparent proxying on port 3128, you could redirect
all HTTP requests as follows:

This process of redirecting one port to another is called port forwarding. Other computers on the
network also need -o GatewayPorts=yes to use the tunnel.

Similarly, tunneling works in the reverse direction. The following syntax

lets you set up a return tunnel from the remote machine to your computer.

Graphical Tunnels
The X Window System is natively network-capable, but almost nobody uses this ability because
communications are again unencrypted over the wire. Tunneling with SSH makes this a far more
attractive proposal.

To tunnel X11, the SSH daemon (sshd) emulates an X server and occupies a display (number 11
by default). When you log in to the server, the server sets the DISPLAY environment variable to
this value, or to localhost:11.0 to be more precise. The idea is to avoid collisions with the X
server running locally. Information sent by a computer to this display is encrypted and sent to
your machine.

State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 128 *:22 *:*
users:(("sshd",pid=501,fd=3))
LISTEN 0 128 127.0.0.1:6010 *:*
users:(("sshd",pid=868,fd=11))
LISTEN 0 128 :::22 :::*
users:(("sshd",pid=501,fd=4))
LISTEN 0 128 ::1:6010 :::*
users:(("sshd",pid=868,fd=10))
[Fri May 12 09:33 PM]$
[Fri May 12 09:33 PM]$sudo netstat -tpn
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
 PID/Program name
tcp 0 0 192.168.2.4:22 192.168.2.1:58712 ESTABLISHED
 862/sshd: pi [priv]
[Fri May 12 09:34 PM]$
[Fri May 12 09:34 PM]$sudo ss -tpn | cat
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 0 192.168.2.4:22 192.168.2.1:58712
users:(("sshd",pid=868,fd=3),("sshd",pid=862,fd=3))

ssh -o GatewayPorts=yes -L 80:RemoteComputer:3128RemoteComputer

ssh -o GatewayPorts=yes -R 3128:LocalComputer:80RemoteComputer

af://n4149

OpenSUSE 11.0 enables X11 forwarding (the technical term for the process) by default. You can
disable X11 forwarding on the machine configured for forwarding by setting the X11Forwarding
variable to no in etc/ssh/sshd_config . The X11DisplayOffset variable with a default value of
10 defines the distance between the virtual display and the physical display; you should keep the
default here.

If the machine on which you want to display tunneled X11 is an OpenSUSE 11.0 machine, the
etc/ssh/ssh_config file will already have the ForwardX11Trusted variable set to yes .

Next, log in to the remote machine and launch, for example, the Xclock program. Figure 5 (Linux
Shell Handbook - 2021 Edition, pg. 75) shows the display (localhost:11.0), the process, and the
matching network connections.

Other Practical Uses
SSH can be put to othe clever uses to. For example, the popular backup tool rsync is perfectly
capable of copying files via SSH. Thus, you can easily implement an offsite backup solution via
rsync and SSH, for which you need to install OpenSSH and rsync on both the source and
destination machines. To perform an offsite backup, specify the path on the remote host as the
destination:

Usually, you don't have to craft any special command to use rsync via SSH. However, if you are
using a non-standard port or a non-default private key location, you'll need to use the -e switch:

As described earlier, you can use scp to copy files securely via SSH. For more efficient
compression and transfer, however, you might want to use a simple trick that allows you to copy
multiple files and directories between local and remote machines by piping a tar datastream to
SSH. Simply put, you can use the tar tool to compress several files or a directory and send the
resulting archive to a remote host via SSH:

This command compresses the contents on the DIR directory, passes the resulting archive to SSH,
and then decompresses the archive on the remote host. Of course, you can perform the same
action in the opposite direction, from the remote host to the local machine:

Using SSH, you can also mount a remote filesystem on your local machine and manage files and
documents stored on a remote host as if they were stored locally. To enable this functionality, you
need to install the sshfs package. On Debian and Ubuntu, this can be done by running the apt-
get install sshfs command as root. You can then use the ssfs command to mount a remote
directory. The following example mounts the remotedir directory in the /home/user/dir path
on the local machine:

rsync -avzh /path/to/local/dir user@remotehost:/path/to/remote/dir

rsync -avzhe 'ssh -p 1777' /path/to/local/dir user@remotehost:/path/to/remote/dir

tar zcf - DIR | ssh user@remotehost 'tar zxf -'

ssh user@remotehost 'tar zcf - DIR' | tar zxf -

sshfs user@remotehost:
 /path/to/remotedir /home/user/dir -o idmap=user -o uid=1000 -o gid=1000

af://n4155

The -o parameters make the mounted directory writable by the local user with the specified user
and group IDs.

Sometimes, you might need to run certain commands on the remote host as soon as you
establish an SSH connection:

As soon as an SSH connection is established, the command switches to the specified directory
and runs the foo.sh script in the Bash shell.

Conclusions
The SSH package includes a collection of important programs that make working on networks far
more secure. The feature scope covers anything from basic encrypted connections, through
tunneling and port forwarding, to X11 forwarding.

Figure 5: A forwarded X11 connection - Xclock is running on a
remote machine.

Synchronizing Data with Rsync
Rsync is the perfect synchronization tool for keeping your data in sync. The program manages file
properties and uses SSH to encrypt your data, and it is perfect for transferring large volumes of
data, if the target computer has a copy of a previous version.

Rsync checks for differences between the source and target versions. The tool that has been
developed by the Samba team uses an efficient checksum-search algorithm for comparing data;
rsync only transfers the differences between the two sides and therefore saves time and
bandwidth.

In Sync

ssh -p 1973 pi@192.168.1.101 -t "cd /path/to/dir ; ./foo.sh ; /bin/bash"

harmuth@debian:~$ ssh sector
Last login: Wed Sep 28 16:42:42 2005 from 192.168.10.254 on ttyp3
Linux SECTOR 2.4.31 #1 SMP Do Aug 4 14:24:58 CEST 2005 i686 unknown
You have mail.

Last login: Wed Sep 28 16:42:52 2005 from 192.168.10.254
harmuth@SECTOR:~$ xclock &
[1] 8056
harmuth@SECTOR:~$ echo $DISPLAY
localhost:11.0
harmuth@SECTOR:~$ ps aux | grep xclock | grep -v grep
harmuth 8056 1.0 0.3 5280 3308 ttyp3 S 16:43 0:00 xclock
harmuth@SECTOR:~$ su -
Password:
SECTOR:~$ netstat -tpn | grep xclock
tcp 0 0 127.0.0.1:52503 127.0.0.1:6011 VERBUNDEN
8056/xclock
SECTOR:~$

af://n4170
af://n4172
af://n4174
af://n4177

The generic syntax for rsync is rsync [options] source target , where target can be a local
target on the same machine or a remote target on another machine. The choice of source and
target is critical; decide carefully in which direction you will be synchronizing to avoid loss of data.
If you're not sure that you are using the correct options or the correct source/target, you can run
rsync with the -n flag to tell the program to perform a trial run. Additionally, you can increase the
amount of information by defining -v and switching to verbose output.

To mirror a directory dir1 on a local machine, for example, type:

As the output shows, rsync would transfer normal files but leave out subdirectories and symbolic
links (non-regular file). To transfer directories recursively down to the lowest level, you should
specify the -r option. Using the -l flag additionally picks up your symlinks. Of course, a
combination of the options is also possible:

Rsync has an alternative approach to handling symlinks. If you replace -l with -L , the program
will resolve the link, and your former symlinks will end up as "normal" files at the target.

Be careful with the slash - appending a slash to a directory name influences the way rsync
handles an operation (see the "Common Rsync Traps" box).

As You Were
If you will be using rsync to create backups, it makes sense to keep the attributes of the original
files. By attributes I mean permissions and timestamps - that is, information on the last access
time (atime), the last status change (ctime), and the last modification (mtime) .

Additionally, administrators can benefit from parameters that preserve owner and group data
and support device files. To retain the permissions, just specify the -p option; -t handles the
timestamps, and -g keeps the group membership.

Whereas any normal user can specify these parameters, the -o (keep the owner data) and -D
(device attributes) flags are available only to root. The complete command line with all these
options could look like this:

Don't worry - you don't have to remember all these options. Rsync offers a practical shortcut and
a special option that combines these parameters for this case. Instead of -rlptgoD , just type -a .

Exclusive
Rsync has another practical option that allows you to exclude certain files from the
synchronization process. To leverage this feature, specify the --exclude= option and a search
pattern and define the files to exclude. With this option, you can use wildcards:

$ rsync dir1/* dir2/
skipping directory foo
skipping directory bar
skipping non-regular file "text.txt"

rsync -lr dir1/* dir2/

rsync -rlptgoD /home/huhn /backup

rsync -a --exclude=*.wav ~/music backup/

af://n4185
af://n4191

This example excludes large WAV files that end in .wav from the backup of a music collection. If
you need to exclude MP3s as well, just append another exclude statement and a pattern:

To save time, you can store your exclusions in a text file. To do this, you will need a separate line
for each search pattern. Specify the --exclude-from=file_with_exclusions parameter to parse
the file.

Tidying Up
Rsync offers various parameters for deleting data that is no longer needed or wanted. To get rid
of files in your backup that no longer exist in the source, type --delete . Rsync's default behavior
is to delete files before the transfer is finished. Alternatively, you can define delete-after to
delete files of the target after all the syncing is done.

Additionally, you can tell rsync to delete files that you have excluded. For example, imagine you've
decided that you no longer want the MP3s in the backup and you've started to exclude them with
--exclude=*.mp3 . Now you can define --delete-excluded , and rsync will recognize that those
files are no longer wanted.

All --delete options have basically the same goal: to keep an exact copy of the original. If you
don't use the switch, you will have to clean up manually; otherwise, the files that you've decided
are useless will remain. Use these options with care.

Common Rsync Traps
Some rsync options could cause trouble if you don't use them with caution. Being aware of these
common mistakes can help.

Most users find the final slash for directories confusing at first. For example, if you call rsync
-a source/folder target/ , rsync will transfer the directory called folder and its contents
to the target directory. If the directory folder doesn't exist, rsync will create it. If you
append a slash to source/folder , rsync will only transfer the contents of folder . That
means a file source/folder/foo.txt is being transferred to target/foo.txt instead of
target/folder/foo.txt .
An absolute classic troublemaker is the option --delete . If you get source and target mixed
up, --delete will happily delete several original files. To be on the safe side, remember to
use -n in a test run.
If a transfer is interrupted and you're using the --partial flag, rsync saves parts of the file
under the same name as the original, which is not always helpful. Imagine that you're using
rsync to update a large and existing ISO image of your favorite distribution (like a Release
Candidate). The transfer of the new version gets interrupted after just a few bytes. Rsync will
overwrite your original file with the smaller part of the ISO image from the server, and you
will have lost your current file and have to start from scratch. To avoid data loss in this
scenario, you can create a hard link before calling rsync. If the transfer fails now, you won't
lose the ISO image; instead the partial file will be given a new name without destroying the
original.

Tuning Rsync

rsync -a --exclude=*.wav --exclude=*.mp3 ...

af://n4197
af://n4201
af://n4210

INFO

[1] Rsync website: (https://rsync.samba.org)

[2] Grsync: (http://www.opbyte.it/grsync/)

Several options increase rsync's performance. Often, I use the -z switch to compress data when I
sync data over a network connection. Figure 1 shows this using Grsync, the graphical front end to
rsync. If the connection is very slow, you can also define a bandwidth limit. To transfer data with
only 20KBps, for example, use:

Rsync is perfect for transferring large volumes of data. If you specify the --partial parameter
and the transfer is interrupted for some reason, you can pick up the transfer from the point at
which you left off. Specifying the --progress option gives you a progress indicator to let you keep
track of the transfer operation:

At the other end of the connection, the partial file is hidden in the target directory at first. Typing
ls -a reveals a file called 12_Moladh_Uibhist.mp3.7rUSSq . The dot at the start of the file name
keeps the file hidden, and the arbitrary extension removes the danger of overwriting existing files.

When the transfer completes, the file gets its original name back. If the transfer is interrupted,
you can restart by specifying the --partial option again. Alternatively, you have a shortcut: If you
want to use a combination of --partial and --progress , simply use -P .

Rsync keeps your data up to date and you stay on top of confusing version changes. Its options
help you manage file properties, and it works well with SSH. When you need to transfer large
volumes of data, rsync comes to your rescue.

Regular Expressions
Anchors

rsync ... --bwlimit=20

$ rsync -avz --progress --partial remote.server:/home/huhn/music/folk ~/music/
receiving file list ...
42 files to consider
...
12_Moladh_Uibhist.mp3
 1143849 4% 339.84kB/s 0:01:10

https://rsync.samba.org/
http://www.opbyte.it/grsync/
af://n4225
af://n4226

Characters Meaning

^ Start of string, or start of line in multi-line pattern

\A Start of string

$ End of string, or end of line in multi-line pattern

\Z End of string

\b Word boundary

\B Not word boundary

\< Start of word

\> End of word

Characters Meaning

\c Control character

\s White space

\S Not white space

\d Digit

\D Not digit

\w Word

\W Not word

\x Hexadecimal digit

\O Octal digit

Character Classes

The POSIX Character Set table below has been taken from the grep info page with a tiny amount
of editing, see [10] in the Bibliography for further information.

POSIX Character Sets

af://n4255
af://n4288

Characters Meaning

[:upper:] uppercase letters

[:lower:] lowercase letters

[:alpha:]
alphabetic (letters) meaning upper+lower (both uppercase and lowercase
letters)

[:digit:] numbers in decimal, 0 to 9

[:alnum:]
alphanumeric meaning alpha+digits (any uppercase or lowercase letters or
any decimal digits)

[:word:] Digits, letters, and underscores

[:blank:] Space and tab

[:space:] whitespace meaning spaces, tabs, newlines and similar

[:graph:] graphically printable characters excluding space

[:print:] printable characters including space

[:punct:] punctuation characters meaning graphical characters minus alpha and digits

[:cntrl:] control characters meaning non-printable characters

[:xdigit:] characters that are hexadecimal digits

Characters Meaning

?= Lookaround assertion

?! Negative Lookaround

?<= Lookbehind assertion

?!= or ?<! Negative Lookbehind

?> Once-only Subexpression

?() Condition [if then]

?()| Condition [if then else]

?# Comment

Assertions

Quantifiers

af://n4332
af://n4361

Characters Meaning Characters Meaning

* 0 or more {3} Exactly 3

+ 1 or more {3,} 3 or more

? 0 or 1 {3,5} 3, 4, or 5

Characters Meaning

\ Escape following character

\Q Begin literal sequence

\E End literal sequence

Add a ? to a quantifier to make it ungreedy or lazy, matches as few characters as possible. By
contrast, something that is greedy matches as many characters as possible.

Escape Sequences

"Escaping" is a way of treating characters which have a special meaning in regular expressions
literally, rather than as special characters.

Common Metacharacters

af://n4384
af://n4399

Characters Meaning

^ (Caret)
means "the beginning of the line". So "^a" means find a line starting with an
"a".

[] (Square
Brackets)

specifies a range. If you did m[a,o,u]m it can become: mam, mum, mom if
you did: m[a-d]m it can become anything that starts and ends with m and
has any character a to d inbetween. For example, these would work: mam,
mbm, mcm, mdm. This kind of wildcard specifies an “or” relationship (you
only need one to match).

[!]

This construct is similar to the [] construct, except rather than matching
any characters inside the brackets, it'll match any character, as long as it is
not listed between the [and]. This is a logical NOT. For example rm
myfile[!9] will remove all myfiles* (ie. myfiles1, myfiles2 etc) but won't
remove a file with the number 9 anywhere within it's name.

[^]

This is the equivalent of [!] in standard wildcards. This performs a logical
“not”. This will match anything that is not listed within those square
brackets. For example, rm myfile[^9] will remove all myfiles* (ie. myfiles1,
myfiles2 etc) but won't remove a file with the number 9 anywhere within it's
name.

{} (Curly
braces)

terms are separated by commas and each term must be the name of
something, or a wildcard. This wildcard will copy anything that matches
either wildcard(s), or exact name(s) (an “or” relationship, one or the other).
For example cp {*.doc,*.pdf} ~ will copy anything ending with .doc or
.pdf to the users home directory. Note that spaces are not allowed after the
commas (or anywhere else).

()
Parentheses

Used for capturing groups.

\
The escape character is usually \ , i.e. to protect a subsequent special
character. Thus, "\\" searches for a backslash. Note you may need to use
quotation marks and backslash(es).

.
will match any single character, equivalent to ? (question mark) in standard
wildcard expressions. Thus, "m.a" matches "mpa" and "mea" but not "ma"
or "mppa".

.* is used to match any string, equivalent to * in standard wildcards.

*
this item is to be matched zero or more times. ie. n* will match n, nn, nnnn,
nnnnnnn but not na or any other character.

$
means "the end of the line". So "a$" means find a line ending with an "a".
For example, this command searches the file myfile for lines starting with an
"s" and ending with an "n". cat myfile | grep '^s.*n$'

|

This wildcard makes a logical OR relationship between wildcards. This way
you can search for something or something else (possibly using two
different regular expressions). You may need to add a '\' (backslash) before
this command to work, because the shell may attempt to interpret this as a
pipe.

Characters Meaning

? Match 0 or 1 of the preceding token

+ Match 1 or more of the preceding token

< Matches a "<" character

> Matches a ">" character

Characters Meaning

\n New line

\r Carriage return

\t Tab

\v Vertical tab

\f Form feed

\xxx Octal character

\xhh Hex character hh

Characters Meaning

. Any character except new line (\n)

(a|b) a or b

(...) Group

(?:...) Passive (non-capturing) group

[abc] Range (a or b or c)

[^abc] Not (a or b or c)

[a-q] Lower case letter from a to q

[A-Q] Upper case letter from A to Q

[0-7] Digit from 0 to 7

\x Group/subpattern number "x"

Special characters

Groups and Ranges

Ranges are inclusive.

Pattern Modifiers

af://n4452
af://n4478
af://n4514

Characters Meaning

g Global match

i * Case-insensitive

m * Multiple lines

s * Treat string as single line

x * Allow comments and whitespace in pattern

e * Evaluate replacement

U * Ungreedy pattern

Characters Meaning

$n nth non-passive group

$2 "xyz" in /^(abc(xyz))$/

$1 "xyz" in /^(?:abc)(xyz)$/

$` Before matched string

$' After matched string

$+ Last matched string

$& Entire matched string

* Perl-Compatible Regular Expressions (PCRE) modifier

String Replacement

Some regex implementations use \ instead of $.

++Standard Wildcards (globbing patterns)++

Standard wildcards (also known as globbing patterns) are used by various command-line utilities
to work with multiple files. For more information on standard wildcards (globbing patterns) refer
to the manual page by typing:

Can be used by: Standard wildcards are used by nearly any command (including mv, cp, rm and
many others).

? (question mark)
: this can represent any single character. If you specified something at the command line
like "hd?" GNU/Linux would look for hda, hdb, hdc and every other letter/number
between a-z, 0-9.

man 7 glob

af://n4541
af://n4568

* (asterisk)
: this can represent any number of characters (including zero, in other words, zero or more
characters). If you specified a "cd" it would use "cda", "cdrom", "cdrecord" and anything that
starts with “cd” also including “cd” itself. "ml" could by mill, mull, ml, and anything that starts
with an m and ends with an l.

[] (square brackets)
:

{ } (curly brackets)
: : For example, this would be valid:

: This

[!]
:

\ (backslash)
: is used as an "escape" character, i.e. to protect a subsequent special character. Thus, "\”
searches for a backslash. Note you may need to use quotation marks and backslash(es).

++Regular Expressions++

Regular expressions are a type of globbing pattern used when working with text. They are used
for any form of manipulation of multiple parts of text and by various programming languages that
work with text. For more information on regular expressions refer to the manual page or try an
online tutorial, for example IBM Developerworks using regular expressions. For the manual page
type:

Type:

Regular expressions can be used by: Regular Expressions are used by grep (and can be used) by
find and many other programs.

Tip: If your regular expressions don't seem to be working then you probably need to use single
quotation marks over the sentence and then use backslashes on every single special character.

1. . (dot)
:

2. \ (backslash)
: is used as an "escape" character .* (dot and asterisk)
:

3. * (asterisk)
:

4. ^ (caret)
:

5. $ (dollar sign)
:

cp {*.doc,*.pdf} ~

man 7 regex

af://n4587

Table 1: Hardware Information Commands

lsblk Lists information about all available or specified block devices.

lscpu Summarizes CPU architecture information.

lshw Displays hardware information.

lspci Extracts detailed information on the machine's hardware configuration.

lsusb Displays information about USB buses in the system and the devices connected to it.

uname Displays software and hardware information.

: :
 bash
 cat myfile | grep '^s.*n$'

6. [] (square brackets)
: specifies a range. If you did m[a,o,u]m it can become: mam, mum, mom if you did: m[a-d]m
it can become anything that starts and ends with m and has any character a to d inbetween.
For example, these would work: mam, mbm, mcm, mdm. This kind of wildcard specifies an
“or” relationship (you only need one to match).

7. |
:

8. [^]
:

POSIX Character Sets

These are used with: The above commands will work with most tools which work with text (for
example: tr).

For example (advanced example), this command scans the output of the dir command, and prints
lines containing a capital letter followed by a digit:

ls -l | grep '[[:upper:]][[:digit:]]'
The command greps for [upper_case_letter][any_digit], meaning any uppercase letter followed by
any digit. If you remove the [] (square brackets) in the middle it would look for an uppercase
letter or a digit, because it would become [upper_case_letter any_digit]

Hardware Help

In modern Linux, you can work with hardware in several different ways: general information
commands, the dmidecode command, viewing the /proc and /sys virtual filesystems, manipulating
kernel modules, modifying daemon configuration files, and working with systemd.

Important lshw Options

af://n4611
af://n4615
af://n4633

Output and Display

-html Generate HTML output

-xml Generate XML output

-short Show a short summary

-businfo Output bus information

-X Use the graphical interface

Actions

-c, -C, -class Show class information.

-disable Don't run test

-enable Run test

-quiet Hide the status bar

-sanitize Hide confidential information

-numeric Show numeric IDs

For the sake of completeness, hdparm (hardware parameters) should also be mentioned. hdparm
works with the Linux SATA/PATA/SAS libATA subsystem, the older IDE, and some USB drives
released after 2008. It does not work with most solid state drives, and functional options may vary
with the kernel. If hdparm does work on your system, it allows extensive customization, including
setting power management features, 32-bit I/O support on IDE drives, and onboard defect
management features. However, the wrong options can crash a system and brick a hard drive,
and some options have warnings in the man page. If you can use hdparm, it is a powerful tool,
but unless you understand exactly what an option does, you are better off avoiding the command
altogether.

Using modprobe

modprobe adds or removes modules from the Linux kernel.

modprobe [modulename] [option1]=[value1] [option2]=[value2]
^^^ basic command structure
modprobe [modulename] --remove
modprobe [modulename] -r
^^^ removes a module
modinfo [modulename]
^^^ view a list of options for a particular module
modprobe [modulename] -r --dry-run
modprobe [modulename] -rn
^^^ see what a command does without actually running it

af://n4662

Working with Traditional Configuration Files (source: LINUX
SHELL HANDBOOK - 2021 EDITION, page 28)

Although systemd is today the norm for launching services at boot time, there are still services
traditionally called "daemons," that are shell scripts. Distributions use shell-like configuration files
to configure these services easily, without having to invent a new syntax for each configuration.
You can usually recognize these configuration files because they have:

Shell variables (written in capital letters and with no spaces), like BLUETOOTH_ENABLED = 1 in
/etc/default/bluetooth
Comments explaining what each variable means
Shell functions (sometimes) to extend or override features in existing scripts

In Debian-based systems, most of these config scripts are placed in /etc/default/* and can be
edited in a text editor as root. If you make changes to any system shell script or write your own
system scripts, please keep the following facts in mind:

If these scripts run as root, they have the potential to destroy your systemif you add the
wrong command or accidentally activate a command that is supposed to be commented out.
To prevent accidents, always backup a configuration file before editing it.
Scripts are usually called with an "include" to another script by the dot (.) shell command,
and the calling script will terminate if an exit appears.
In the shell, no spaces are allowed before and after the equal sign (=) when setting variables.
KDE and Gnome config files frequently have spaces everywhere to make them easier to read,
but in the shell, a space means separation of a command and its parameters, which can
cause a syntax error. Values or options containing spaces should have quotes around them.

Using systemd (source: LINUX SHELL HANDBOOK - 2021
EDITION, page 29)

Systemd began as a replacement for init for starting daemons and soon morphed into a general
system manager. Configuration files are stored within /etc/systemd. General information is stored
in nine basic files in /etc/systemd, most of which has self-explanatory names, including ones for
login, the logfile, and the network. Systemd configuration files typically begin with a series of fields
in a section labeled [Manager] that can be edited freely. The most important of these files is
system.conf. All the files are detailed in systemd-user.conf(5) in the man pages.

For editing individual system resources, systemd uses the systemctl utility. systemctl works with
units, or system resources configuration files, usually as a three-part structure:

For example, the major sub-commands for system services are status, enable, or disable.

Each unit has its own configuration file, rather than being edited like traditional configuration
files, unit configuration files can be provided an override file or a full-replacement fileby using the
systemctl command. Overrides are stored in /etc/systemd/system. To be used, a new override must
be activated with systemctl daemon-reload. Running the command systemd-delta shows all the
overrides currently running on the system. An override marked [EXTENDED] shows the location of
the override file, whereas one marked [OVERRIDDEN] shows the difference between the original
and the currently used replacement unit file.

systemctl [sub-command] [unit]

af://n4666
af://n4683

Although controversial when first introduced, systemd is a far more orderly approach than the
other methods of configuring or finding information. However it does introduce numerous new
concepts that can be overwhelming at first. As with any other methods, be sure you know what
you are doing with systemd before you actually edit one of its files. See the article on systemd
elsewhere in this issue.

These sources of information and ways to edit are a lot to absorb. Unsurprisingly, functions are
often duplicated between different sources. If you change the configuration, usually you should
use the same approach consistently, so you can keep track of all the changes made more easily.
In many modern systems, the most straightforward approach is to use systemd. However,
experienced users often prefer to edit configuration files, a practice that is as old as Linux itself - if
not older. Most of the time, what matters is not the method so much as consistency.

Systemd Primer
Systemd has gradually replaced the ancient System V as the leading init system for Linux. Most
mainstream Linux varients now use systemd. The init system launches processes when you start
your Linux system, and it also stays around to start and stop services while the system is running.
Systemd also logs system events, automates processes, and much more.

Anatomy of a Unit File
In systemd parlance, a managed object is known as a unit. The files that are used to initialize and
start units at boot time are known as unit files. Admins will find the unit files in folders such as:

/etc/systemd/system/*
/run/systemd/system/*
/usr/lib/systemd/system/*

Unit files serve a role that is similar to the init scripts of older Linux systems; however, a unit file is
not executable. Instead, a unit file is more like a configuration file in the style of Windows .ini files.

The [Unit] section contains a human-readable description of the service; the After variable
specifies other services that need to start first. You could use the Before variable to declare that
the service you are defining with the unit file must start before the service(s) specified with the
variable.

The [Service] section sets the user account and group that the database server. Type determines
the boot style. Simple means that the program specified below ExecStart starts the main process.
The two MySQL scripts specified below ExecStartPre handle the preparatory work.

ExecStartPost calls scripts that need to run after the main program starts. The mysql-wait-ready
script makes sure MySQL completes the cleanup that it normally performs at start-up time. This
means that services that require MySQL do not start until the database is actually ready to accept
connections.

Additionally, the unit file sets a timeout and assigns the database service to the multiuser target.
This target is a special unit that basically assumes the role of the previous runlevel 3 in System V,
which starts the system normally in multiuser mode.

More Security
Unit files support a slew of other parameters, including options that provide an easy way for
improving the security of your services.

The first of these parameters in the [Service] section is:

af://n4691
af://n4693
af://n4707

This setting completely isolates the service from any networks. The service then only sees a
loopback device, and even that does not have a connection to the host's actual loopback device.
Of course, this option is not very useful for network-based services.

A word of caution: Sometimes you need a network, even if the need is not apparent at first glance.
For instance, a service might perform most of its work locally but use Lightweight Directory Access
Protocol (LDAP) to handle authentication. In that case, you need to be sure only users with a user
ID below 1000 are authenticated; names need to resolve to UIDs locally through /etc/passwd for
these accounts.

A second security feature in [Service] is:

If this option is set, the service uses its own /tmp directory instead of the global /tmp , which
protects the service against malicious Symlink and DoS attacks that tend to use /tmp . However,
keep in mind that some services locate communication sockets in /tmp that will not work if they
are in a private directory.

The next two options let you prevent services from writing to specific directories or even
accessing them in any way:

 Linux provides a means for assigning the privileges traditionally associated with superuser. These
privileges are known as capabilities, and you can see the list of all available capabilities by viewing
the capabilities man page:

Systemd additionally lets you assign specific capabilities to a service or withdraw those
capabilities through settings in the unit file. For example, the following line in the [Service] section
of the unit file:

 defines a whitelist of capabilities that the process must have.

Defining such a whitelist is not always easy. The other option is to take capabilities away from the
service. If you prepend the capability with a tilde (~), this capability is explicitly taken away.

You can also use the unit file to limit the resources a service can access. The setrlimit() man page
lists all restrictable resources. For example, if you set the maximum size of a file (FSIZE) that the
service is allowed to generate to 0, as shown in the example below, the service cannot write the
file anywhere. If you specify 1 as the maximum number of processes (NPROC) the service is
allowed to spawn, the service cannot fork any other processes.

PrivateNetwork=yes

PrivateTmp=yes

ReadOnlyDirectories=/var
InaccessibleDirectories=/home

man capabilities

CapabilityBoundingSet=CAP_CHOWN CAP_KILL

LimitNPROC=1
LimitFSIZE=0

You can limit other resources in a similar way.

Monitoring Processes
After your system boots, you might want to know whether all the required services are actually
running. The systemctl command provides an overview of service status. Systemctl lists all
booted services with status information. If you only want to see the failed startups, try:

For a single service, you can view more detailed information with:

The output shows the exit states of the pre- and post-scripts from the unit file, as well as
additional information on the service status.

The status messages can be quite long on a case-by-case basis. Admins can thus use either the n
line number parameter to limit the number of rows to output or the o file parameter to redirect
everything to a file.

Starting and Stopping
Sometimes you need to stop or restart individual services after a boot or reboot. Systemctl and the
stop, start, restart, and reload commands can help; for example:

A user who wants to start or stop a system service must authenticate. If the process does not
respond to the stop command, the only way out is:

This command sends a kill signal to each process in the process group, even to those that the
parent process forked at a later stage. The effect thus resembles killall process name . The -s
option also lets you send another specific signal to a process, for example, SIGHUP to trigger a
reload, as shown in the following example:

The --kill -who option ensures that only the main process receives the signal.

Runlevels

systemctl --state=failed

systemctl status mysql.service

systemctl stop mysqld
systemctl start mysqld

systemctl kill unit_name

systemctl kill -s HUP --kill-who=main crond.service

af://n4727
af://n4734
af://n4742

Command Description

runlevel or who -r View the current runlevel.

ls -l

/lib/systemd/system/runlevel*

View the mapping of various runlevels to the
corresponding systemd targets.

systemctl get-default View your system's default systemd target.

systemctl list-dependencies

graphical.target

View the services that are mapped to your system's
default systemd target.

systemctl show -p WantedBy

sshd.service

See which systemd target (or runlevel) a service
requires to run

Commands Related to Runlevels

Troubleshooting the Linux boot process

Drop into the real TTY terminal
The key combination to drop into the terminal used to be Ctl + Alt + F1 . But that was
before. It has been changed and fairly recently, with 20.04 I think. Anyway, the key combination is
now Ctl + Alt + Fn + F3 (or F2 , F4 , F5 , or F6). To return to the desktop, use
 Ctl + Alt + Fn + F1 .

 This should work in cases where your interface freezes and nothing else works. It is a real
terminal, not a terminal emulator or a terminal
 multiplexer. This type of terminal is sometimes called a "Glass TTY". The vernacular phrase for
doing this is "Dropping down to the terminal"
 because you are now at a layer below the desktop and window manager. If you are using a
terminal emulator on the desktop, if the desktop
 freezes, so does your terminal emulator, but the real terminal may still be functioning. Every
Linux/Unix system has at least one terminal running at all times.

af://n4744
af://n4764
af://n4766
af://n4769

If Ubuntu Locks Up Completely (REISUB)
If it locks up completely, you can REISUB it, which is a safer alternative to just cold rebooting the
computer.

REISUB by:

While holding Alt + SysReq (Print Screen) , type R E I S U B .

Some mneumonics for REISUB:

A palindrome of the word busier, as in The system is busier than it should be!
Reboot Even If System Utterly Broken.
or the classic: Raising Elephants Is So Utterly Boring

NOTE: There exists a less radical way than rebooting the whole system. If SysReq key works, you
can kill processes one-by-one using Alt + SysReq + F . The kernel will kill the most
"expensive" process each time. If you want to kill all processes for one console, you can issue
 Alt + SysReq + K .

R: Switch to XLATE mode
E: Send Terminate signal to all processes except for init
I: Send Kill signal to all processes except for init
S: Sync all mounted filesystems
U: Remount filesystems as read-only
B: Reboot

af://n4769

	Downloading Typora
	Downloading the Aspartate theme for Typora
	Changing the Maximum Width

	Creating images for CDs, DVDs, and flash drives
	Converting and Copying with dd
	Optimizing dd Options
	Rescuing with dd
	Generating ISO images
	Creating Backups
	Creating Bootable Media
	Testing Images Before Burning

	Device partitions and volumes
	MBR to GPT Switch
	fdisk for MBR partitions
	gdisk for GPT Partitions
	GNU Parted
	The LVM Alternative

	Configuring filesystems with mkfs, df, du, and fsck
	mkfs
	mkfs Examples
	Routine maintenance
	Troubleshooting

	Media access with mount and fstab
	Name Game
	Mounting
	Mounting Removable Media
	Critical Mount Options
	Tabular: /etc/fstab
	Out!

	The Language of Computers
	Number Representations
	Example 1: Decimal to Binary to Octal to Hexadecimal
	Binary vs. decimal data measurements

	Understanding Disk Drives
	Disk Geometry Equations

	Parts of the Filesystem
	Inodes
	Nested Do Loop Inside For Loop (for moving files)
	The Bad Block Inode
	Inode-Related Commands

	Links
	Commands for Hard Links & Soft Links

	Filesystem Hierarchy Standard
	Package Management
	How Package Management Systems Work
	Package Tools
	Usage of Low-Level Tools
	Usage of High-Level Tools
	Debian and Debian Derivatives
	Aptitude stuff
	Apt archives path
	List services

	How to Use Git
	Download for Linux and Unix
	Debian/Ubuntu
	Fedora
	Gentoo
	Arch Linux
	openSUSE
	Mageia
	Nix/NixOS
	FreeBSD
	Solaris 9/10/11 (OpenCSW)
	Solaris 11 Express
	OpenBSD
	Alpine
	Red Hat Enterprise Linux, Oracle Linux, CentOS, Scientific Linux, et al.
	Slitaz

	Git via Git
	Initial Setup
	Clone a Repository
	Create a Branch
	Change Stuff
	Stage Changes
	Commit Changes
	Push Changes
	Create a Pull Request and Merge to master
	Other Use Cases
	Can’t this Be Easier?
	Where To Next

	Git
	Supplementary Instructions
	List of common Git commands
	Options
	example
	init
	status
	add
	rm
	reset
	commit
	remote
	push
	clone
	configure
	Modify personal information in a project
	Configure word wrapping
	Common usage scenarios
	Create SSH keys

	Multi-account ssh configuration

	All about sudo & su
	Figure 1: Using su to switch accounts is much quicker than logging in and out.
	The Sudo Command
	Figure 4: Query /etc/sudoers to learn what commands you can run.
	sudoers
	Avoiding Self-Sabotage
	The Administrator Sees Everything

	Assigning Access Permissions to Users and Groups
	Files for Users and Groups
	Figure 1: The /etc/password file under systemd.
	Figure 2: /etc/shadow contains encrypted passwords where they exist, but many of its fields are no longer used by many users.
	Figure 3: /etc/group remains useful, but it is also a repository of obsolete groups.
	Adding, Locking, and Removing
	Figure 4: The adduser command sets up a basic account.
	Managing Users and Groups
	Permissions
	Figure 5: Listing permissions at the command line.
	Special Permissions
	Listing 1: Programs That Use the setuid/setgid Bit
	Modifying Permissions
	Table 1: Permissions
	Listing 2: Setting the s Bit by Number
	Changing Group Memberships
	Changing Owners and Groups
	Across the Board
	Listing 3: Oops ... Locked Out!
	Listing 4: Using the find Command
	From the Beginning
	Calendar command
	History command
	List command
	Change directory command
	Print working directory
	Make directory command
	Copy command
	Finding files
	The which command
	remove file(s)

	File compression
	Packages to Install
	Supported file extensions
	Common Flag Usage
	.tar - archiving utility (Default: no compression) - supports gzip and bzip2 compression
	.gz - uses Lempel-Ziv coding (LZ77) for compression
	.tar.gz - remember the flags given above as an alternative
	.bz2 - uses Burrows-Wheeler block sorting text compression algorithm, and Huffman coding. Compression is generally considerably better than that achieved by bzip command (LZ77/LZ78-based compressors)
	.tar.bz2
	.xz
	.tar.xz
	From Denny Zhang's Website
	1.1 Decompress
	1.2 Compress Common Format
	1.3 Advanced Usage

	Pandoc - markup converter
	Scanning
	Setup a Fujitsu ix500 scanner on Linux
	Install package
	Approve the connection
	Get a list of devices:
	Get a list of all device specific options:
	Scanning multiple pages (where each page is a separate file) as colored .PNG image files
	Installing the package img2pdf in order to convert .PNGs or .JPEGs to PDF files
	Verifying the package version
	Converting and combining scanned .PNGs into a single PDF file
	Using both commands in a "one-liner" command (The ; indicates that the commands should run sequentially as separate commands)

	Cryptography
	GNU Privacy Guard
	Better Living through GPG
	Generate Public and Private Keys
	{List, Import/Add, Export, Find}, Keys
	List Keys
	Export Your Public Keys
	Publish Your Key to Public Key Server
	Import/Add Other People's Public Keys
	Find People's Keys

	Revoke Key
	Sign Documents
	Sign Documents with Different Key

	Verify Signed Documents
	Encrypt File
	Decrypt File

	Cybersecurity Tools for configuring and troubleshooting network connectivity
	LINK LAYER Services
	LINK LAYER Location
	Interfaces
	Routing
	Names to Numbers and Back
	Troubleshooting
	Troubleshooting DNS
	Putting It All Together

	Tools for Supporting Wireless Networks
	WPA Supplicant
	wpa_passphrase
	Listing 1: /etc/wpa_supplicant/wpa_supplicant.conf

	iwd
	Listing 2: First Steps (look at Figure 2 on page 81 in Linux Shell Handbook - 2021 Edition)

	WLAN Setup
	Listing 3: main.conf

	Using Samba (setting up a Samba share)
	On a Linux machine (source: https://ubuntu.com/server/docs/samba-file-server)
	On a Windows machine
	On a macOS machine

	Using WINE
	Preliminary Steps for installing WINE versions 5.0 & 6.0 (source:https://wiki.winehq.org/Ubuntu)
	Procedure for installing WINE version 6.0 (sources:https://wiki.winehq.org/Ubuntu and
	https://linuxhint.com/install-winehq-on-ubuntu-20-04/)

	Cory's Favorite Terminal Color Scheme
	Desktop Environments & Window Managers

	Programs that I've Installed on Linux machines (successfully or not)
	Builtin Commands That Are Symbols
	I/O Streams & Redirection
	Filters

	System Administration
	UNIX Job Control
	Closing Terminal Kills My Program?

	Processes
	Orphan Processes
	Zombie Processes
	Why we have signals
	Signal process
	Common signals
	Differences between SIGHUP, SIGINT, SIGTERM, SIGKILL, SIGSTOP?
	One Big Family
	Top Tool!
	Mister Nice Guy
	More Information About Memory
	Uptime Load Averages

	Cron and At keep your tasks on task
	At Your Service
	Displaying and Deleting Jobs
	Access Privileges
	A cron (command run on (UNIX) scheduler) for All Seasons
	Well Structured
	Table 1: at Time Formats
	Global cron Tables
	Listing 1: Ubuntu and Debian crontab Entries

	Cron Alternatives

	Cal, date, hwclock, and NTP
	Command-Line Calendar
	What's the Time?
	Formatted Output
	Table 1: Date Command-Line Parameters
	Setting the System Time
	Everything Is Relative
	Setting the Hardware Clock
	The Hardware Clock's Verbose Output
	Automated!

	Secure connections with SSH
	Getting Started with SSH
	Figure 1: On initial login, SSH imports the host key.
	Figure 2: If the host key changes, the SSH client will refuse to connect.
	Listing 1: Running Commands on the Remote Machine
	Figure 3: Public key authentication makes the login more user friendly by removing the password prompt.
	Useful Freebies
	Building Tunnels
	Tunnel Tricks
	Table 1: netstat Replacement Commands
	Graphical Tunnels
	Other Practical Uses
	Conclusions
	Figure 5: A forwarded X11 connection - Xclock is running on a remote machine.

	Synchronizing Data with Rsync
	In Sync
	As You Were
	Exclusive
	Tidying Up
	Common Rsync Traps
	Tuning Rsync

	Regular Expressions
	Anchors
	Character Classes
	POSIX Character Sets
	Assertions
	Quantifiers
	Escape Sequences
	Common Metacharacters
	Special characters
	Groups and Ranges
	Pattern Modifiers
	String Replacement
	++Standard Wildcards (globbing patterns)++
	++Regular Expressions++
	POSIX Character Sets
	Hardware Help
	Important lshw Options
	Using modprobe
	Working with Traditional Configuration Files (source: LINUX SHELL HANDBOOK - 2021 EDITION, page 28)
	Using systemd (source: LINUX SHELL HANDBOOK - 2021 EDITION, page 29)

	Systemd Primer
	Anatomy of a Unit File
	More Security
	Monitoring Processes
	Starting and Stopping

	Runlevels
	Commands Related to Runlevels

	Troubleshooting the Linux boot process
	Drop into the real TTY terminal
	If Ubuntu Locks Up Completely (REISUB)

